Laminar Forced Convection Heat and Mass Transfer of Humid Air across a Vertical Plate with Condensation

Condensation of humid air along a vertical plate was numerically investigated, with the mathematical model built on the full boundary layer equations and the film-wise condensation assumption. The velocity, heat and mass transfer characteristics at the gas-liquid interface were numerical analyzed an...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of chemical engineering Vol. 19; no. 6; pp. 944 - 954
Main Author 李成 李俊明
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2011
Subjects
Online AccessGet full text
ISSN1004-9541
2210-321X
DOI10.1016/S1004-9541(11)60076-1

Cover

More Information
Summary:Condensation of humid air along a vertical plate was numerically investigated, with the mathematical model built on the full boundary layer equations and the film-wise condensation assumption. The velocity, heat and mass transfer characteristics at the gas-liquid interface were numerical analyzed and the results indicated that it was not reasonable to neglect the condensate film from the point of its thickness only. The condensate film thickness, interface temperature drop and the interface tangential velocity affect the physical fields weakly. However, the subcooling and the interface normal velocity were important factors to be considered before the simplification was made. For higher wall temperature, the advective mass transfer contributed much to the total mass transfer. Therefore, the boundary conditions were the key to judge the rationality of neglecting the condensate film for numerical solutions. The numerical results were checked by comparing with experiments and correlations.
Bibliography:Condensation of humid air along a vertical plate was numerically investigated, with the mathematical model built on the full boundary layer equations and the film-wise condensation assumption. The velocity, heat and mass transfer characteristics at the gas-liquid interface were numerical analyzed and the results indicated that it was not reasonable to neglect the condensate film from the point of its thickness only. The condensate film thickness, interface temperature drop and the interface tangential velocity affect the physical fields weakly. However, the subcooling and the interface normal velocity were important factors to be considered before the simplification was made. For higher wall temperature, the advective mass transfer contributed much to the total mass transfer. Therefore, the boundary conditions were the key to judge the rationality of neglecting the condensate film for numerical solutions. The numerical results were checked by comparing with experiments and correlations.
condensation, binary mixture, convective heat and mass transfer
11-3270/TQ
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1004-9541
2210-321X
DOI:10.1016/S1004-9541(11)60076-1