QCD resummation for groomed jet observables at NNLL+NLO
A bstract We use a direct QCD approach to carry out the next-to-next-to-leading logarithmic (NNLL) resummation for observables groomed with the modified mass-drop tagger (Soft Drop β = 0). We focus on observables which are additive given an arbitrary number of soft-collinear emissions. For this clas...
Saved in:
| Published in | The journal of high energy physics Vol. 2023; no. 1; pp. 45 - 35 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2023
Springer Nature B.V SpringerOpen |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1029-8479 1126-6708 1127-2236 1029-8479 |
| DOI | 10.1007/JHEP01(2023)045 |
Cover
| Summary: | A
bstract
We use a direct QCD approach to carry out the next-to-next-to-leading logarithmic (NNLL) resummation for observables groomed with the modified mass-drop tagger (Soft Drop
β
= 0). We focus on observables which are additive given an arbitrary number of soft-collinear emissions. For this class of observables, we arrange the structure of the NNLL terms into two distinct categories. The first defines a simplified
inclusive
tagger, whereby the NNLL collinear structure is directly related to ungroomed observables. The second defines a clustering correction which takes a particularly simple form when the Cambridge-Aachen (C/A) algorithm is used to cluster the jets. We provide, in addition to the QCD resummation of groomed jet mass, the first NNLL resummed predictions, matched to NLO, for a range of groomed jet angularities with mMDT grooming. Moreover, we also include for the first time in the same calculation, finite
z
cut
effects computed at NLL level alongside the small
z
cut
NNLL results which simultaneously improves upon both of the calculations used for groomed jet mass phenomenological studies to date. While for simplicity we focus on
e
+
e
−
collisions, the essential NNLL resummation we develop is process independent and hence with the appropriate NLO matching our results are also applicable for hadron collider phenomenology. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1029-8479 1126-6708 1127-2236 1029-8479 |
| DOI: | 10.1007/JHEP01(2023)045 |