Performance enhancement of a building-integrated photovoltaic module using phase change material
The performance of Building integrated photovoltaic (BIPV) depends on the incident solar radiation, photovoltaic (PV) cell temperature, location and orientations of the building. In this work, the building integrated photovoltaic–phase change material (BIPV–PCM) module has been developed to enhance...
Saved in:
| Published in | Energy (Oxford) Vol. 142; pp. 803 - 812 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
01.01.2018
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0360-5442 1873-6785 |
| DOI | 10.1016/j.energy.2017.10.090 |
Cover
| Summary: | The performance of Building integrated photovoltaic (BIPV) depends on the incident solar radiation, photovoltaic (PV) cell temperature, location and orientations of the building. In this work, the building integrated photovoltaic–phase change material (BIPV–PCM) module has been developed to enhance the performance of the BIPV system by regulating its PV cell temperature using PCM. The BIPV and BIPV-PCM system performance has been assessed outdoors by installing it on the facades of experimental room at Kovilpatti (9°10′0″N, 77°52′0″E), Tamil Nadu, and India. The thermal regulation of the system is provided with inorganic glauber salt (Na2SO4·10H2O) phase change material (PCM). The improvement in electrical and thermal performance of the BIPV due to the incorporation of PCM is studied. The various parameters such as power generation, solar heat gain, module surface temperatures and electrical efficiency are analysed. On observation, it is found that BIPV-PCM maintained lower peak instantaneous temperature than the reference BIPV, leading to improved BIPV-PCM cell conversion efficiencies. The experimental results show that BIPV- PCM electrical efficiency is increased by 10% while its surface temperature is reduced up to 8 °C than the reference BIPV module.
•Simplified BIPV–PCM system has been developed.•Novel method has been proposed to incorporate the inorganic glauber salt PCM.•Incorporation of PCM improved the electrical efficiency by 10%.•The BIPV-PCM cell temperature is reduced up to 8 °C compared to reference module.•Suitability of BIPV-PCM for facades at various orientations is investigated. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0360-5442 1873-6785 |
| DOI: | 10.1016/j.energy.2017.10.090 |