Range image segmentation by an effective jump-diffusion method

This paper presents an effective jump-diffusion method for segmenting a range image and its associated reflectance image in the Bayesian framework. The algorithm works on complex real-world scenes (indoor and outdoor), which consist of an unknown number of objects (or surfaces) of various sizes and...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 26; no. 9; pp. 1138 - 1153
Main Authors Han, Feng, Tu, Zhuowen, Zhu, Song-Chun
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0162-8828
1939-3539
DOI10.1109/TPAMI.2004.70

Cover

More Information
Summary:This paper presents an effective jump-diffusion method for segmenting a range image and its associated reflectance image in the Bayesian framework. The algorithm works on complex real-world scenes (indoor and outdoor), which consist of an unknown number of objects (or surfaces) of various sizes and types, such as planes, conics, smooth surfaces, and cluttered objects (like trees and bushes). Formulated in the Bayesian framework, the posterior probability is distributed over a solution space with a countable number of subspaces of varying dimensions. The algorithm simulates Markov chains with both reversible jumps and stochastic diffusions to traverse the solution space. The reversible jumps realize the moves between subspaces of different dimensions, such as switching surface models and changing the number of objects. The stochastic Langevin equation realizes diffusions within each subspace. To achieve effective computation, the algorithm precomputes some importance proposal probabilities over multiple scales through Hough transforms, edge detection, and data clustering. The latter are used by the Markov chains for fast mixing. The algorithm is tested on 100 1D simulated data sets for performance analysis on both accuracy and speed. Then, the algorithm is applied to three data sets of range images under the same parameter setting. The results are satisfactory in comparison with manual segmentations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-1
ObjectType-Feature-3
ISSN:0162-8828
1939-3539
DOI:10.1109/TPAMI.2004.70