Plant derived active compounds of ayurvedic neurological formulation, Saraswatharishta as a potential dual leucine zipper kinase inhibitor: an in-silico study

Recent findings have highlighted the essential role of dual leucine zipper kinase (DLK) in neuronal degeneration. Saraswatharishta (SWRT), an ayurvedic formulation utilized in traditional Indian medicine, has demonstrated effectiveness in addressing neurodegenerative diseases. Herein, we aim to delv...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomolecular structure & dynamics Vol. 42; no. 20; pp. 11201 - 11214
Main Authors Koirala, Suman, Roy, Rajarshi, Samanta, Sunanda, Mahapatra, Subhasmita, Kar, Parimal
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 06.12.2024
Subjects
Online AccessGet full text
ISSN0739-1102
1538-0254
1538-0254
DOI10.1080/07391102.2023.2260892

Cover

More Information
Summary:Recent findings have highlighted the essential role of dual leucine zipper kinase (DLK) in neuronal degeneration. Saraswatharishta (SWRT), an ayurvedic formulation utilized in traditional Indian medicine, has demonstrated effectiveness in addressing neurodegenerative diseases. Herein, we aim to delve into the atomistic details of the mode of action of phytochemicals present in SWRT against DLK. Our screening process encompassed over 500 distinct phytochemicals derived from the main ingredients of the SWRT formulation. Through a comparative analysis of docking scores and relative poses, we successfully identified four novel compounds, which underwent further investigation via 2 × 500 ns long molecular dynamics (MD) simulations. Among the top four compounds, CID16066851 sourced from the Acorus calamus displayed the most stable complex with DLK. The molecular mechanics Poisson − Boltzmann surface area (MM-PBSA) calculations highlighted the significance of electrostatic and van der Waals interactions in the binding recognition process. Additionally, we identified key residues, namely Phe192, Leu243, Val139, and Leu141, as hotspots that predominantly govern the DLK-inhibitor interaction. Notably, the leading compounds are sourced from the Acorus calamus, Syzygium aromaticum, Zingiber officinale, and Anethum sowa plants present in the SWRT formulation. Overall, the findings of our study hold promise for future drug development endeavors combating neurodegenerative conditions. Communicated by Ramaswamy H. Sarma
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0739-1102
1538-0254
1538-0254
DOI:10.1080/07391102.2023.2260892