High-Resolution Spatiotemporal Water Use Mapping of Surface and Direct-Root-Zone Drip-Irrigated Grapevines Using UAS-Based Thermal and Multispectral Remote Sensing

Site-specific irrigation management for perennial crops such as grape requires water use assessments at high spatiotemporal resolution. In this study, small unmanned-aerial-system (UAS)-based imaging was used with a modified mapping evapotranspiration at high resolution with internalized calibration...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 13; no. 5; p. 954
Main Authors Chandel, Abhilash K., Khot, Lav R., Molaei, Behnaz, Peters, R. Troy, Stöckle, Claudio O., Jacoby, Pete W.
Format Journal Article
LanguageEnglish
Published MDPI AG 01.03.2021
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs13050954

Cover

More Information
Summary:Site-specific irrigation management for perennial crops such as grape requires water use assessments at high spatiotemporal resolution. In this study, small unmanned-aerial-system (UAS)-based imaging was used with a modified mapping evapotranspiration at high resolution with internalized calibration (METRIC) energy balance model to map water use (UASM-ET approach) of a commercial, surface, and direct-root-zone (DRZ) drip-irrigated vineyard. Four irrigation treatments, 100%, 80%, 60%, and 40%, of commercial rate (CR) were also applied, with the CR estimated using soil moisture data and a non-stressed average crop coefficient of 0.5. Fourteen campaigns were conducted in the 2018 and 2019 seasons to collect multispectral (ground sampling distance (GSD): 7 cm/pixel) and thermal imaging (GSD: 13 cm/pixel) data. Six of those campaigns were near Landsat 7/8 satellite overpass of the field site. Weather inputs were obtained from a nearby WSU-AgWeatherNet station (1 km). First, UASM-ET estimates were compared to those derived from soil water balance (SWB) and conventional Landsat-METRIC (LM) approaches. Overall, UASM-ET (2.70 ± 1.03 mm day−1 [mean ± std. dev.]) was higher than SWB-ET (1.80 ± 0.98 mm day−1). However, both estimates had a significant linear correlation (r = 0.64–0.81, p < 0.01). For the days of satellite overpass, UASM-ET was statistically similar to LM-ET, with mean absolute normalized ET departures (ETd,MAN) of 4.30% and a mean r of 0.83 (p < 0.01). The study also extracted spatial canopy transpiration (UASM-T) maps by segmenting the soil background from the UASM-ET, which had strong correlation with the estimates derived by the standard basal crop coefficient approach (Td,MAN = 14%, r = 0.95, p < 0.01). The UASM-T maps were then used to quantify water use differences in the DRZ-irrigated grapevines. Canopy transpiration (T) was statistically significant among the irrigation treatments and was highest for grapevines irrigated at 100% or 80% of the CR, followed by 60% and 40% of the CR (p < 0.01). Reference T fraction (TrF) curves established from the UASM-T maps showed a notable effect of irrigation treatment rates. The total water use of grapevines estimated using interpolated TrF curves was highest for treatments of 100% (425 and 320 mm for the 2018 and 2019 seasons, respectively), followed by 80% (420 and 317 mm), 60% (391 and 318 mm), and 40% (370 and 304 mm) of the CR. Such estimates were within 5% to 11% of the SWB-based water use calculations. The UASM-T-estimated water use was not the same as the actual amount of water applied in the two seasons, probably because DRZ-irrigated vines might have developed deeper or lateral roots to fulfill water requirements outside the irrigated soil volume. Overall, results highlight the usefulness of high-resolution imagery toward site-specific water use management of grapevines.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2072-4292
2072-4292
DOI:10.3390/rs13050954