PointCleanNet: Learning to Denoise and Remove Outliers from Dense Point Clouds

Point clouds obtained with 3D scanners or by image‐based reconstruction techniques are often corrupted with significant amount of noise and outliers. Traditional methods for point cloud denoising largely rely on local surface fitting (e.g. jets or MLS surfaces), local or non‐local averaging or on st...

Full description

Saved in:
Bibliographic Details
Published inComputer graphics forum Vol. 39; no. 1; pp. 185 - 203
Main Authors Rakotosaona, Marie‐Julie, La Barbera, Vittorio, Guerrero, Paul, Mitra, Niloy J., Ovsjanikov, Maks
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.02.2020
Wiley
Subjects
Online AccessGet full text
ISSN0167-7055
1467-8659
DOI10.1111/cgf.13753

Cover

More Information
Summary:Point clouds obtained with 3D scanners or by image‐based reconstruction techniques are often corrupted with significant amount of noise and outliers. Traditional methods for point cloud denoising largely rely on local surface fitting (e.g. jets or MLS surfaces), local or non‐local averaging or on statistical assumptions about the underlying noise model. In contrast, we develop a simple data‐driven method for removing outliers and reducing noise in unordered point clouds. We base our approach on a deep learning architecture adapted from PCPNet, which was recently proposed for estimating local 3D shape properties in point clouds. Our method first classifies and discards outlier samples, and then estimates correction vectors that project noisy points onto the original clean surfaces. The approach is efficient and robust to varying amounts of noise and outliers, while being able to handle large densely sampled point clouds. In our extensive evaluation, both on synthetic and real data, we show an increased robustness to strong noise levels compared to various state‐of‐the‐art methods, enabling accurate surface reconstruction from extremely noisy real data obtained by range scans. Finally, the simplicity and universality of our approach makes it very easy to integrate in any existing geometry processing pipeline. Both the code and pre‐trained networks can be found on the project page (https://github.com/mrakotosaon/pointcleannet). Point clouds obtained with 3D scanners or by image‐based reconstruction techniques are often corrupted with significant amount of noise and outliers. Traditional methods for point cloud denoising largely rely on local surface fitting (e.g. jets or MLS surfaces), local or non‐local averaging or on statistical assumptions about the underlying noise model. In contrast, we develop a simple data‐driven method for removing outliers and reducing noise in unordered point clouds. We base our approach on a deep learning architecture adapted from PCPNet, which was recently proposed for estimating local 3D shape properties in point clouds. Our method first classifies and discards outlier samples, and then estimates correction vectors that project noisy points onto the original clean surfaces. The approach is efficient and robust to varying amounts of noise and outliers, while being able to handle large densely sampled point clouds. In our extensive evaluation, both on synthetic and real data, we show an increased robustness to strong noise levels compared to various state‐of‐the‐art methods, enabling accurate surface reconstruction from extremely noisy real data obtained by range scans. Finally, the simplicity and universality of our approach makes it very easy to integrate in any existing geometry processing pipeline. Both the code and pre‐trained networks can be found on the project page (https://github.com/mrakotosaon/pointcleannet).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.13753