Parental-origin-specific epigenetic modification of the mouse H19 gene

The H19 gene produces an abundant developmentally regulated transcript of unknown function in normal embryos. In the mouse it lies on chromosome 7 and is subject to transcriptional regulation by parental imprinting, which results in the maternally inherited gene being expressed and the paternally in...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 362; no. 6422; pp. 751 - 755
Main Authors Ferguson-Smith, Anne C., Sasaki, Hiroyuki, Cattanach, Bruce M., Surani, M. Azim
Format Journal Article
LanguageEnglish
Published London Nature Publishing 22.04.1993
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN0028-0836
1476-4687
DOI10.1038/362751a0

Cover

More Information
Summary:The H19 gene produces an abundant developmentally regulated transcript of unknown function in normal embryos. In the mouse it lies on chromosome 7 and is subject to transcriptional regulation by parental imprinting, which results in the maternally inherited gene being expressed and the paternally inherited gene being repressed. Embryos carrying maternal duplication/paternal deficiency for distal chromosome 7 (MatDi7) therefore express a double dose of H19. Here we examine the parental-origin-specific epigenetic modifications that may be involved in this regulation by comparing CpG methylation and nuclease sensitivity of chromatin in MatDi7 embryos with normal littermates. We show that specific sites in the CpG island promoter and 5' portion of the gene are methylated only on the paternal allele. Furthermore, active maternal alleles in chromatin of MatDi7 embryos are more sensitive and accessible to nucleases. Therefore hypermethylation and chromatin compaction in the region of the H19 promoter is associated with repression of the paternally inherited copy of the gene. Most, but not all, of these sites are unmethylated in sperm, with methylation of the paternal promoter occurring after fertilization. These results contrast with our findings for the closely linked and reciprocally imprinted gene encoding insulin-like growth factor II (ref. 4).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0028-0836
1476-4687
DOI:10.1038/362751a0