Non-Coherent UWB Communication in the Presence of Multiple Narrowband Interferers

There has been an emerging interest in non-coherent ultra-wide bandwidth (UWB) communications, particularly for low-data rate applications because of its low-complexity and low-power consumption. However, the presence of narrowband (NB) interference severely degrades the communication performance si...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 9; no. 11; pp. 3365 - 3379
Main Authors Rabbachin, A, Quek, T Q S, Pinto, P C, Oppermann, I, Win, M Z
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.11.2010
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1536-1276
1558-2248
DOI10.1109/TWC.2010.091510.080203

Cover

More Information
Summary:There has been an emerging interest in non-coherent ultra-wide bandwidth (UWB) communications, particularly for low-data rate applications because of its low-complexity and low-power consumption. However, the presence of narrowband (NB) interference severely degrades the communication performance since the energy of the interfering signals is also collected by the receiver. In this paper, we compare the performance of two non-coherent UWB receiver structures - the autocorrelation receiver (AcR) and the energy detection receiver (EDR) - in terms of the bit error probability (BEP). The AcR is based on the transmitted reference signaling with binary pulse amplitude modulation, while the EDR is based on the binary pulse position modulation. We analyze the BEPs for these two non-coherent systems in a multipath fading channel, both in the absence and presence of NB interference. We consider two cases: a) single NB interferer, where the interfering node is located at a fixed distance from the receiver, and b) multiple NB interferers, where the interfering nodes with the same carrier frequency are scattered according to a spatial Poisson process. Our framework is simple enough to enable a tractable analysis and provide insights that are of value in the design of practical UWB systems subject to interference.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2010.091510.080203