Diagnosis of steam turbine rotor based on improved convolutional neural network algorithm

To address the challenges of insufficient precision and limited adaptability in conventional rotor fault diagnosis methods, we propose a new approach using convolutional neural networks. This aims to effectively identify complex and diverse fault patterns in a steam turbine rotor through a thorough...

Full description

Saved in:
Bibliographic Details
Published inDiscover Artificial Intelligence Vol. 5; no. 1; pp. 41 - 14
Main Authors Zhou, Zhongtao, Zhou, Miao, Huang, Hui, Li, Yanghai, Xu, Wanbing
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2025
Springer Nature B.V
Springer
Subjects
Online AccessGet full text
ISSN2731-0809
2731-0809
DOI10.1007/s44163-025-00269-x

Cover

Abstract To address the challenges of insufficient precision and limited adaptability in conventional rotor fault diagnosis methods, we propose a new approach using convolutional neural networks. This aims to effectively identify complex and diverse fault patterns in a steam turbine rotor through a thorough examination and in-depth investigation. An HZXT-009 sliding ball bearing simulation rig was used to conduct fault tests such as rotor misalignment, unbalance, and touching faults. The data collected experimentally was used to perform a comprehensive analysis of the temporal and spectral signal characteristics. Use the obtained data to train and enhance the convolutional neural network fault diagnosis model. The results of the model testing accuracy can reach 99%. The generalization test is introduced to verify that the model trained by the simulation test data can detect multi-condition faults in the operation of the power plant. The network detection results show that the accuracy rate can reach 97.5%, which is expected to be widely used in actual production and improve the efficiency and accuracy of fault diagnosis of rotor system.
AbstractList To address the challenges of insufficient precision and limited adaptability in conventional rotor fault diagnosis methods, we propose a new approach using convolutional neural networks. This aims to effectively identify complex and diverse fault patterns in a steam turbine rotor through a thorough examination and in-depth investigation. An HZXT-009 sliding ball bearing simulation rig was used to conduct fault tests such as rotor misalignment, unbalance, and touching faults. The data collected experimentally was used to perform a comprehensive analysis of the temporal and spectral signal characteristics. Use the obtained data to train and enhance the convolutional neural network fault diagnosis model. The results of the model testing accuracy can reach 99%. The generalization test is introduced to verify that the model trained by the simulation test data can detect multi-condition faults in the operation of the power plant. The network detection results show that the accuracy rate can reach 97.5%, which is expected to be widely used in actual production and improve the efficiency and accuracy of fault diagnosis of rotor system.
Abstract To address the challenges of insufficient precision and limited adaptability in conventional rotor fault diagnosis methods, we propose a new approach using convolutional neural networks. This aims to effectively identify complex and diverse fault patterns in a steam turbine rotor through a thorough examination and in-depth investigation. An HZXT-009 sliding ball bearing simulation rig was used to conduct fault tests such as rotor misalignment, unbalance, and touching faults. The data collected experimentally was used to perform a comprehensive analysis of the temporal and spectral signal characteristics. Use the obtained data to train and enhance the convolutional neural network fault diagnosis model. The results of the model testing accuracy can reach 99%. The generalization test is introduced to verify that the model trained by the simulation test data can detect multi-condition faults in the operation of the power plant. The network detection results show that the accuracy rate can reach 97.5%, which is expected to be widely used in actual production and improve the efficiency and accuracy of fault diagnosis of rotor system.
ArticleNumber 41
Author Li, Yanghai
Xu, Wanbing
Zhou, Miao
Zhou, Zhongtao
Huang, Hui
Author_xml – sequence: 1
  givenname: Zhongtao
  surname: Zhou
  fullname: Zhou, Zhongtao
  organization: State Grid Hubei Electric Power Co., Ltd., Power Science Research Institute
– sequence: 2
  givenname: Miao
  surname: Zhou
  fullname: Zhou, Miao
  organization: State Grid Hubei Electric Power Co., Ltd., Power Science Research Institute
– sequence: 3
  givenname: Hui
  surname: Huang
  fullname: Huang, Hui
  email: 360688470@qq.com
  organization: State Grid Hubei Electric Power Co., Ltd., Power Science Research Institute
– sequence: 4
  givenname: Yanghai
  surname: Li
  fullname: Li, Yanghai
  organization: State Grid Hubei Electric Power Co., Ltd., Power Science Research Institute
– sequence: 5
  givenname: Wanbing
  surname: Xu
  fullname: Xu, Wanbing
  organization: State Grid Hubei Electric Power Co., Ltd., Power Science Research Institute
BookMark eNqNkMtuFDEQRS0UJELID7CyxLrBr2nbSxRekSKxgQUrq9ptDx56XIPdnUz-Hmc6AlaIVZXse49K5zk5y5gDIS85e80Z02-qUryXHRObjjHR2-74hJwLLXnHDLNnf-3PyGWtO9ZSZqOlZefk27sE24w1VYqR1jnAns5LGVIOtOCMhQ5Qw0gx07Q_FLxtu8d8i9MyJ8ww0RyWchrzHZYfFKYtljR_378gTyNMNVw-zgvy9cP7L1efupvPH6-v3t50Xvbq2MWNFl5rMKEXo1fccKa4GOXge6ujiSKKEEAaiJy3Tz2K6JkGMKYPQ--FvCDXK3dE2LlDSXso9w4hudMDlq2DMic_BTeOcSOFYUIFq4ySg5UqKu1B98ZyJRtLrqwlH-D-DqbpN5Az9yDbrbJdk-1Ost2xtV6trebn5xLq7Ha4lOamOim4tMIo-8AWa8oXrLWE-H_ox4NqC-dtKH_Q_2j9AvCdoOM
Cites_doi 10.3390/s18051429
10.1016/j.measurement.2019.02.022
10.1016/j.egyr.2020.04.029
10.1016/j.ymssp.2018.12.051
10.1016/j.ymssp.2019.106272
10.3390/machines11080832
10.1016/j.asoc.2020.106703
10.1016/j.ymssp.2018.03.025
10.1007/s40430-021-03136-9
10.1080/09603409.2022.2160896
10.1007/s13042-022-01583-x
10.1016/j.micpro.2020.103079
10.1016/j.simpat.2011.01.005
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. Dec 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. Dec 2025
DBID C6C
AAYXX
CITATION
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOA
DOI 10.1007/s44163-025-00269-x
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (subscription)
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2731-0809
EndPage 14
ExternalDocumentID oai_doaj_org_article_ddf5328024e94843b934f47ca7689143
10.1007/s44163-025-00269-x
10_1007_s44163_025_00269_x
GroupedDBID 0R~
8G5
AAJSJ
AAKKN
AASML
ABEEZ
ABUWG
ACACY
ACULB
ACVER
AFGXO
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AZQEC
BENPR
C24
C6C
CCPQU
DWQXO
EBLON
EBS
GNUQQ
GROUPED_DOAJ
GUQSH
IAO
ICD
ITC
M2O
M~E
OK1
PHGZT
PIMPY
SOJ
AAYXX
CITATION
PHGZM
PUEGO
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c364x-f572c77a8e62dc41810412d3bc697f8f2f2eea38af111817d2fc07aa886eb6c23
IEDL.DBID DOA
ISSN 2731-0809
IngestDate Fri Oct 03 12:51:46 EDT 2025
Tue Aug 19 23:45:24 EDT 2025
Wed Oct 08 14:30:19 EDT 2025
Wed Oct 01 06:32:40 EDT 2025
Tue Apr 29 01:11:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Fault diagnosis
Deep learning
CNN
Rotor systems
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364x-f572c77a8e62dc41810412d3bc697f8f2f2eea38af111817d2fc07aa886eb6c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/ddf5328024e94843b934f47ca7689143
PQID 3213928493
PQPubID 5642945
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_ddf5328024e94843b934f47ca7689143
unpaywall_primary_10_1007_s44163_025_00269_x
proquest_journals_3213928493
crossref_primary_10_1007_s44163_025_00269_x
springer_journals_10_1007_s44163_025_00269_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Istanbul
PublicationTitle Discover Artificial Intelligence
PublicationTitleAbbrev Discov Artif Intell
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References GM Morteza (269_CR4) 2021
VGL Pereira (269_CR2) 2023; 219
C Wang (269_CR19) 2021; 41
A Alblawi (269_CR3) 2020; 6
F Jia (269_CR12) 2018; 110
D Arian (269_CR7) 2022; 39
269_CR11
JM Barrera (269_CR14) 2022; 13
M Montazeri-Gh (269_CR18) 2020; 96
MW Salilew (269_CR5) 2023; 11
K Salahshoor (269_CR10) 2011; 19
B Mariusz (269_CR1) 2023; 40
B Samir (269_CR6) 2023; 149
L Mubaraali (269_CR15) 2020; 76
X Zhu (269_CR17) 2019; 138
C Jilei (269_CR8) 2023; 38
Z Chen (269_CR16) 2019; 133
269_CR20
S Guo (269_CR21) 2018; 18
Y Jin (269_CR9) 2023; 38
B Yang (269_CR13) 2019; 122
References_xml – volume: 38
  start-page: 176
  issue: 08
  year: 2023
  ident: 269_CR8
  publication-title: Therm Power Eng
– volume: 18
  start-page: 1429
  issue: 5
  year: 2018
  ident: 269_CR21
  publication-title: Sensors
  doi: 10.3390/s18051429
– ident: 269_CR11
– volume: 138
  start-page: 526
  year: 2019
  ident: 269_CR17
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.02.022
– volume: 6
  start-page: 1083
  year: 2020
  ident: 269_CR3
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2020.04.029
– volume: 122
  start-page: 692
  year: 2019
  ident: 269_CR13
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.12.051
– volume: 133
  start-page: 106272
  year: 2019
  ident: 269_CR16
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2019.106272
– volume: 11
  start-page: 832
  issue: 8
  year: 2023
  ident: 269_CR5
  publication-title: Machines
  doi: 10.3390/machines11080832
– volume: 96
  start-page: 106703
  year: 2020
  ident: 269_CR18
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2020.106703
– volume: 110
  start-page: 349
  year: 2018
  ident: 269_CR12
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.03.025
– ident: 269_CR20
– volume: 219
  start-page: 119546
  issue: P2
  year: 2023
  ident: 269_CR2
  publication-title: Renew Energy
– volume: 149
  start-page: 107284
  issue: 4
  year: 2023
  ident: 269_CR6
  publication-title: Eng Fail Anal
– year: 2021
  ident: 269_CR4
  publication-title: J Braz Soc Mech Sci Eng
  doi: 10.1007/s40430-021-03136-9
– volume: 38
  start-page: 144
  issue: 2
  year: 2023
  ident: 269_CR9
  publication-title: Therm Power Eng
– volume: 40
  start-page: 1
  issue: 1
  year: 2023
  ident: 269_CR1
  publication-title: Mater High Temp
  doi: 10.1080/09603409.2022.2160896
– volume: 13
  start-page: 3113
  issue: 10
  year: 2022
  ident: 269_CR14
  publication-title: Int J Mach Learn Cyb
  doi: 10.1007/s13042-022-01583-x
– volume: 76
  start-page: 103079
  issue: 4
  year: 2020
  ident: 269_CR15
  publication-title: Microprocess Microsyst
  doi: 10.1016/j.micpro.2020.103079
– volume: 41
  start-page: 2417
  issue: 7
  year: 2021
  ident: 269_CR19
  publication-title: Chin J Electr Eng
– volume: 19
  start-page: 1280
  issue: 5
  year: 2011
  ident: 269_CR10
  publication-title: Simul Model Pract Theory
  doi: 10.1016/j.simpat.2011.01.005
– volume: 39
  start-page: 572
  issue: 7
  year: 2022
  ident: 269_CR7
  publication-title: J Ind Prod Eng
SSID ssj0002857390
Score 2.3128273
Snippet To address the challenges of insufficient precision and limited adaptability in conventional rotor fault diagnosis methods, we propose a new approach using...
Abstract To address the challenges of insufficient precision and limited adaptability in conventional rotor fault diagnosis methods, we propose a new approach...
SourceID doaj
unpaywall
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 41
SubjectTerms Accuracy
Artificial Intelligence
CNN
Computer Science
Deep learning
Engineering
Experiments
Fault diagnosis
Neural networks
Rotor systems
Turbines
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central (subscription)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QE4UJ5ioSAfuNGIxXYc54BQn6qQWCFEpXKyJn60lbbJst2K5d_j8TopvVScEiWRHM-MPQ_PfAPwzqkauVBY1G4iC9loOt_1VYECMfrPNqClQuGvU3V8Ir-clqcbMO1rYSitst8T00btOksx8g-CR1sl7qW1-Dz_VVDXKDpd7VtoYG6t4D4liLF7sMkJGWsEm3uH02_fh6gL12UVvfxcPZNq6CSZJAV1dSV_pC5WtzRUAvK_ZX0OB6YP4f51O8c_v3E2-0cnHT2GR9mYZLtr7j-BDd8-ha2-UQPL6_YZ_DxYJ9RdXLEuMOLrJYuqJjrFni266HUzUmaOdS27SEGGeE_p6Fks4xAEe5kuKWmc4ews0mZ5fvkcTo4Of-wfF7mnQmGFkqsilBW3VYXaK-6sjPqdALecaKyqq6ADD9x7FBrDRypJrRwPdlIhaq18oywXL2DUdq1_CayprWzQhqB1KQMqLK1KhbxSiMZN7Bje93Q08zV0hhlAkhPVTaS6SVQ3qzHsEamHLwn2Oj3oFmcmryLjXCgF19Gu8LXUUjS1kEFWFqPTROOOYbtnlMlr8crcSM4Ydnrm3by-65d2Bgb_xwxe3T34a3jAScpSKsw2jJaLa_8mGjTL5m2W0r9fKPOa
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELbQcoA9lPKoui2tfOitG7G1Hds5lscKVYITSHCyxq92pSVBu4tK_33H3mx4CKH2lChO4sTfWDPjmflMyBcvK2BcQlH5kSiE1Sm-G1QBHAD9ZxfBpULhs3N5eil-XJVXLU1OqoV5Fr8_mItkMRRp09XkLlQF2ovrqKRkDszKo249helSof_e1sW8_OgT3ZMp-p_YlV0otE827upb-PMbptNH2mb8lrxpzUT6fYnrNlkL9Q7ZWm3BQNsZuUP6j_gEd8n18TJxbjKnTaQJvxuKKgWd30BnDXrXNCktT5uaTvJiAp6ntPNW_LDDRG-ZDzk5nML0ZzObLH7d7JHL8cnF0WnR7p1QOC7FfRFLxZxSoINk3gnU44lYy3PrZKWijiyyEIBriN9S6anyLLqRAtBaBisd4-9Ir27q8J5QWzlhwcWodSkiSCidzAW7gnPrR25Avq5G1dwuKTJMR4acMTCIgckYmPsBOUwD392Z6K3zBUTdtLPFeB9LzjTaD6ESWnBbcRGFcoDOUep3QPZXsJl2zs0NZ2jNoratsHm4gvKh-bVPGnZw_8MffPi_t38kmyzJYE6B2Se9xewufEJDZmE_Zwn-CxEa6uk
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE4UJ5ioSAfuNFsF9vx41goVYVExYGV2pPlZ1mxTVbbrLrl12M7DyhCCMQpUewofowz39gz3wC8ckxqTJgupJvSghqRznc9LzTROtrPNmibAoU_nrDjGf1wWp5uwWEfC5O93fsjyTamIbE0Vc3-0oX9IfCNJhxRpFSsyYiQxWYSi2_BNisjIh_B9uzk08FZyivHSdoBnMouXub3L9_QSZm6_wbeHI5I78LtdbXU11d6sfhJCx3tgO_b3zqffJ2sGzOx336hdvzfDt6Hex1MRQetXD2ALV89hJ0-BQTq_giP4OywddWbX6I6oCQxFygqsWhue7Sqoz2Pkpp0qK7QPG9fxPvk6N4JfPxEItTMl-yOjvTivF7Nmy8Xj2F29P7zu-Oiy9ZQWMLopgglx5ZzLTzDztKIHBKVlyPGMsmDCDhg7zUROrxJwa7c4WCnXGshmDfMYvIERlVd-aeAjLTUaBuCECUNmunSshwiTAkxbmrH8LqfL7VsSTnUQL-cR07FkVN55NRmDG_TlA41E6F2flCvzlW3PpVzoSRYRMTiJRWUGElooNzqaI6l745htxcI1a3yS0VwxM9Rv8tYvNfP6Y_iPzVpbxCkv-jBs3-r_hzu4CQ52elmF0bNau1fROjUmJfdyvgO1WASow
  priority: 102
  providerName: Unpaywall
Title Diagnosis of steam turbine rotor based on improved convolutional neural network algorithm
URI https://link.springer.com/article/10.1007/s44163-025-00269-x
https://www.proquest.com/docview/3213928493
https://link.springer.com/content/pdf/10.1007/s44163-025-00269-x.pdf
https://doaj.org/article/ddf5328024e94843b934f47ca7689143
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2731-0809
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002857390
  issn: 2731-0809
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2731-0809
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002857390
  issn: 2731-0809
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2731-0809
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002857390
  issn: 2731-0809
  databaseCode: BENPR
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2731-0809
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002857390
  issn: 2731-0809
  databaseCode: AAJSJ
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2731-0809
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002857390
  issn: 2731-0809
  databaseCode: C6C
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2731-0809
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002857390
  issn: 2731-0809
  databaseCode: C24
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagHIBDeYu0JfKBG10RbK8fxzakqpAaVYhI7cma9QOC0t0qTUV66W_v2LsJ6QU4cPGudlZae8beb8aeByHvvTTAuITC-IEoRKXT-W5QBXAAtJ9dBJcChU_G8ngivpyVZxulvpJPWJseuGXcR-9jyZlGKAlGaMErw0UUygHqyQbBPv19B9psGFM_85ZRqdCa76JkcqycSKpHkaq3JrvDFMt7SJQT9t_TMtcHo0_J4-v6Em5-wWy2gT1Hz8l2pzTSg7azL8iDUL8kz1YFGWi3Pl-R88-t49z0ijaRJvldUIQUNH4DnTdoXdMEWp42NZ3mzQS8T27n3fTDT6T0lvmSncMpzL438-nix8VrMjkafRseF13thMJxKZZFLBVzSoEOknknEMdTYi3PKyeNijqyyEIAriF-SqGnyrPoBgpAaxkq6Rh_Q7bqpg5vCa2MExW4GLUuRQQJpZM5YFdwXvmB65EPKz7ayzZFhl0nQ85ct8h1m7lulz1ymFi9fjOlt84PUOi2E7r9m9B7ZG8lKNutuSvLGWqziLYGyfsr4f0m_6lL-2sB_8MIdv7HCHbJE5bmYnaM2SNbi_l1eIfqzaLqk0eHo_Hp1z55OGQitXLYz7Mb25PbEdIn49OD8zstbPpz
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTxQxFG8IHNCD38ZV1B70JBOXttOPAzEikEVgYwwkeKqdfiDJMrPuLmH55_zb7Ot2BrkQL5x2sjNJZ973a997P4TeOa4ModwUyvVZwSoJ57teFIYaE_NnG4yFRuHDIR8cs68n5ckS-tP2wkBZZWsTk6F2jYU98o-UxFgl2lJFP41_F4AaBaerLYSGydAKbjONGMuNHfv-6jKmcNPNve3I7_eE7O4cfRkUGWWgsJSzeRFKQawQRnpOnGXR48EIKkcry5UIMpBAvDdUmrABTZrCkWD7whgpua-4hcEH0QWsMMpUTP5WtnaG3753uzxEloKqfu7WST17DEKgAlBkIf9RxfyGR0zAATei3e6A9j5avajH5urSjEb_-MDdR-hBDl7x54W0PUZLvn6CHrbAEDjbiafox_aigO9sipuAQY7OcXRtMQn3eNLELB-D83S4qfFZ2tSI11D-ntUgLgFjNtNPKlLHZnQaeTH7df4MHd8JdZ-j5bqp_QuEK2VZZWwIUpYsGG5Ky1PjMKO0cn3bQx9aOurxYlSH7oYyJ6rrSHWdqK7nPbQFpO6ehDHb6Y9mcqqz1mrnQkmJjHGMV0wyWinKAhPWxCQN1u2htZZROuv-VF9Lag-tt8y7vn3bK613DP6PL3h5--Jv0erg6PBAH-wN91-hewQkLpXhrKHl2eTCv47B1Kx6kyUWo593rSR_AfE2MNU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw1KpaieXAjhgo4AOcaNTBdhznUCHKdNRSGFWISuVkHC-l0jQZZqbq9Bf5Kt7zOCm9VFx6ShRHcvL257cR8sbJ0jAuTVa6vshEpTC-64vMcGPAf7bBWCwU_jqSu4fi81F-tEL-tLUwmFbZysQoqF1j8Yx8kzOwVUCWlnwzpLSIg8Hww-R3hhOkMNLajtMwacyC24rtxlKRx76_OAd3bra1NwDcv2VsuPP9026WJg5klkuxyEJeMFsURnnJnBWg_bAdleOVlWURVGCBeW-4MuE9FmwWjgXbL4xRSvpKWmyCAOpgDYNfICTWtndGB9-6Ex-mcljop8qdWL8n0BzKcKIs-kJltriiHeMQgSuWbxesvUtun9UTc3FuxuN_9OHwAbmXDFn6cUl5D8mKrx-R--2QCJpkxmPyY7BM5juZ0SZQpKlTCmoOHHJPpw14_BQVqaNNTU_iAQfcYyp8YgnYAltuxktMWKdmfAy4mP86fUIObwS6T8lq3dT-GaFVaUVlbAhK5SIYaXIrYxGx4Lxyfdsj71o46smybYfuGjRHqGuAuo5Q14se2UZQd29iy-34oJke68TB2rmQc6bApvGlUIJXJRdBFNaAw4b79sh6iyid5MBMX1Jtj2y0yLtcvu6TNjoE_8cfPL9-89fkFjCL_rI32n9B7jAkuJiRs05W59Mz_xLsqnn1KhEsJT9vmkf-Agc6NQQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE4UJ5ioSAfuNFsF9vx41goVYVExYGV2pPlZ1mxTVbbrLrl12M7DyhCCMQpUewofowz39gz3wC8ckxqTJgupJvSghqRznc9LzTROtrPNmibAoU_nrDjGf1wWp5uwWEfC5O93fsjyTamIbE0Vc3-0oX9IfCNJhxRpFSsyYiQxWYSi2_BNisjIh_B9uzk08FZyivHSdoBnMouXub3L9_QSZm6_wbeHI5I78LtdbXU11d6sfhJCx3tgO_b3zqffJ2sGzOx336hdvzfDt6Hex1MRQetXD2ALV89hJ0-BQTq_giP4OywddWbX6I6oCQxFygqsWhue7Sqoz2Pkpp0qK7QPG9fxPvk6N4JfPxEItTMl-yOjvTivF7Nmy8Xj2F29P7zu-Oiy9ZQWMLopgglx5ZzLTzDztKIHBKVlyPGMsmDCDhg7zUROrxJwa7c4WCnXGshmDfMYvIERlVd-aeAjLTUaBuCECUNmunSshwiTAkxbmrH8LqfL7VsSTnUQL-cR07FkVN55NRmDG_TlA41E6F2flCvzlW3PpVzoSRYRMTiJRWUGElooNzqaI6l745htxcI1a3yS0VwxM9Rv8tYvNfP6Y_iPzVpbxCkv-jBs3-r_hzu4CQ52elmF0bNau1fROjUmJfdyvgO1WASow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosis+of+steam+turbine+rotor+based+on+improved+convolutional+neural+network+algorithm&rft.jtitle=Discover+Artificial+Intelligence&rft.au=Zhou%2C+Zhongtao&rft.au=Zhou%2C+Miao&rft.au=Huang%2C+Hui&rft.au=Li%2C+Yanghai&rft.date=2025-12-01&rft.issn=2731-0809&rft.eissn=2731-0809&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1007%2Fs44163-025-00269-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s44163_025_00269_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2731-0809&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2731-0809&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2731-0809&client=summon