Diagnosis of steam turbine rotor based on improved convolutional neural network algorithm
To address the challenges of insufficient precision and limited adaptability in conventional rotor fault diagnosis methods, we propose a new approach using convolutional neural networks. This aims to effectively identify complex and diverse fault patterns in a steam turbine rotor through a thorough...
        Saved in:
      
    
          | Published in | Discover Artificial Intelligence Vol. 5; no. 1; pp. 41 - 14 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Cham
          Springer International Publishing
    
        01.12.2025
     Springer Nature B.V Springer  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2731-0809 2731-0809  | 
| DOI | 10.1007/s44163-025-00269-x | 
Cover
| Abstract | To address the challenges of insufficient precision and limited adaptability in conventional rotor fault diagnosis methods, we propose a new approach using convolutional neural networks. This aims to effectively identify complex and diverse fault patterns in a steam turbine rotor through a thorough examination and in-depth investigation. An HZXT-009 sliding ball bearing simulation rig was used to conduct fault tests such as rotor misalignment, unbalance, and touching faults. The data collected experimentally was used to perform a comprehensive analysis of the temporal and spectral signal characteristics. Use the obtained data to train and enhance the convolutional neural network fault diagnosis model. The results of the model testing accuracy can reach 99%. The generalization test is introduced to verify that the model trained by the simulation test data can detect multi-condition faults in the operation of the power plant. The network detection results show that the accuracy rate can reach 97.5%, which is expected to be widely used in actual production and improve the efficiency and accuracy of fault diagnosis of rotor system. | 
    
|---|---|
| AbstractList | To address the challenges of insufficient precision and limited adaptability in conventional rotor fault diagnosis methods, we propose a new approach using convolutional neural networks. This aims to effectively identify complex and diverse fault patterns in a steam turbine rotor through a thorough examination and in-depth investigation. An HZXT-009 sliding ball bearing simulation rig was used to conduct fault tests such as rotor misalignment, unbalance, and touching faults. The data collected experimentally was used to perform a comprehensive analysis of the temporal and spectral signal characteristics. Use the obtained data to train and enhance the convolutional neural network fault diagnosis model. The results of the model testing accuracy can reach 99%. The generalization test is introduced to verify that the model trained by the simulation test data can detect multi-condition faults in the operation of the power plant. The network detection results show that the accuracy rate can reach 97.5%, which is expected to be widely used in actual production and improve the efficiency and accuracy of fault diagnosis of rotor system. Abstract To address the challenges of insufficient precision and limited adaptability in conventional rotor fault diagnosis methods, we propose a new approach using convolutional neural networks. This aims to effectively identify complex and diverse fault patterns in a steam turbine rotor through a thorough examination and in-depth investigation. An HZXT-009 sliding ball bearing simulation rig was used to conduct fault tests such as rotor misalignment, unbalance, and touching faults. The data collected experimentally was used to perform a comprehensive analysis of the temporal and spectral signal characteristics. Use the obtained data to train and enhance the convolutional neural network fault diagnosis model. The results of the model testing accuracy can reach 99%. The generalization test is introduced to verify that the model trained by the simulation test data can detect multi-condition faults in the operation of the power plant. The network detection results show that the accuracy rate can reach 97.5%, which is expected to be widely used in actual production and improve the efficiency and accuracy of fault diagnosis of rotor system.  | 
    
| ArticleNumber | 41 | 
    
| Author | Li, Yanghai Xu, Wanbing Zhou, Miao Zhou, Zhongtao Huang, Hui  | 
    
| Author_xml | – sequence: 1 givenname: Zhongtao surname: Zhou fullname: Zhou, Zhongtao organization: State Grid Hubei Electric Power Co., Ltd., Power Science Research Institute – sequence: 2 givenname: Miao surname: Zhou fullname: Zhou, Miao organization: State Grid Hubei Electric Power Co., Ltd., Power Science Research Institute – sequence: 3 givenname: Hui surname: Huang fullname: Huang, Hui email: 360688470@qq.com organization: State Grid Hubei Electric Power Co., Ltd., Power Science Research Institute – sequence: 4 givenname: Yanghai surname: Li fullname: Li, Yanghai organization: State Grid Hubei Electric Power Co., Ltd., Power Science Research Institute – sequence: 5 givenname: Wanbing surname: Xu fullname: Xu, Wanbing organization: State Grid Hubei Electric Power Co., Ltd., Power Science Research Institute  | 
    
| BookMark | eNqNkMtuFDEQRS0UJELID7CyxLrBr2nbSxRekSKxgQUrq9ptDx56XIPdnUz-Hmc6AlaIVZXse49K5zk5y5gDIS85e80Z02-qUryXHRObjjHR2-74hJwLLXnHDLNnf-3PyGWtO9ZSZqOlZefk27sE24w1VYqR1jnAns5LGVIOtOCMhQ5Qw0gx07Q_FLxtu8d8i9MyJ8ww0RyWchrzHZYfFKYtljR_378gTyNMNVw-zgvy9cP7L1efupvPH6-v3t50Xvbq2MWNFl5rMKEXo1fccKa4GOXge6ujiSKKEEAaiJy3Tz2K6JkGMKYPQ--FvCDXK3dE2LlDSXso9w4hudMDlq2DMic_BTeOcSOFYUIFq4ySg5UqKu1B98ZyJRtLrqwlH-D-DqbpN5Az9yDbrbJdk-1Ost2xtV6trebn5xLq7Ha4lOamOim4tMIo-8AWa8oXrLWE-H_ox4NqC-dtKH_Q_2j9AvCdoOM | 
    
| Cites_doi | 10.3390/s18051429 10.1016/j.measurement.2019.02.022 10.1016/j.egyr.2020.04.029 10.1016/j.ymssp.2018.12.051 10.1016/j.ymssp.2019.106272 10.3390/machines11080832 10.1016/j.asoc.2020.106703 10.1016/j.ymssp.2018.03.025 10.1007/s40430-021-03136-9 10.1080/09603409.2022.2160896 10.1007/s13042-022-01583-x 10.1016/j.micpro.2020.103079 10.1016/j.simpat.2011.01.005  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2025 Copyright Springer Nature B.V. Dec 2025  | 
    
| Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Springer Nature B.V. Dec 2025  | 
    
| DBID | C6C AAYXX CITATION 3V. 7XB 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U ADTOC UNPAY DOA  | 
    
| DOI | 10.1007/s44163-025-00269-x | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (subscription) ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni)  | 
    
| DatabaseTitleList | Publicly Available Content Database | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 2731-0809 | 
    
| EndPage | 14 | 
    
| ExternalDocumentID | oai_doaj_org_article_ddf5328024e94843b934f47ca7689143 10.1007/s44163-025-00269-x 10_1007_s44163_025_00269_x  | 
    
| GroupedDBID | 0R~ 8G5 AAJSJ AAKKN AASML ABEEZ ABUWG ACACY ACULB ACVER AFGXO AFKRA ALMA_UNASSIGNED_HOLDINGS ARCSS AZQEC BENPR C24 C6C CCPQU DWQXO EBLON EBS GNUQQ GROUPED_DOAJ GUQSH IAO ICD ITC M2O M~E OK1 PHGZT PIMPY SOJ AAYXX CITATION PHGZM PUEGO 3V. 7XB 8FK MBDVC PKEHL PQEST PQQKQ PQUKI PRINS Q9U ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c364x-f572c77a8e62dc41810412d3bc697f8f2f2eea38af111817d2fc07aa886eb6c23 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2731-0809 | 
    
| IngestDate | Fri Oct 03 12:51:46 EDT 2025 Tue Aug 19 23:45:24 EDT 2025 Wed Oct 08 14:30:19 EDT 2025 Wed Oct 01 06:32:40 EDT 2025 Tue Apr 29 01:11:20 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Fault diagnosis Deep learning CNN Rotor systems  | 
    
| Language | English | 
    
| License | cc-by-nc-nd | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c364x-f572c77a8e62dc41810412d3bc697f8f2f2eea38af111817d2fc07aa886eb6c23 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://doaj.org/article/ddf5328024e94843b934f47ca7689143 | 
    
| PQID | 3213928493 | 
    
| PQPubID | 5642945 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ddf5328024e94843b934f47ca7689143 unpaywall_primary_10_1007_s44163_025_00269_x proquest_journals_3213928493 crossref_primary_10_1007_s44163_025_00269_x springer_journals_10_1007_s44163_025_00269_x  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-12-01 | 
    
| PublicationDateYYYYMMDD | 2025-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Cham | 
    
| PublicationPlace_xml | – name: Cham – name: Istanbul  | 
    
| PublicationTitle | Discover Artificial Intelligence | 
    
| PublicationTitleAbbrev | Discov Artif Intell | 
    
| PublicationYear | 2025 | 
    
| Publisher | Springer International Publishing Springer Nature B.V Springer  | 
    
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer  | 
    
| References | GM Morteza (269_CR4) 2021 VGL Pereira (269_CR2) 2023; 219 C Wang (269_CR19) 2021; 41 A Alblawi (269_CR3) 2020; 6 F Jia (269_CR12) 2018; 110 D Arian (269_CR7) 2022; 39 269_CR11 JM Barrera (269_CR14) 2022; 13 M Montazeri-Gh (269_CR18) 2020; 96 MW Salilew (269_CR5) 2023; 11 K Salahshoor (269_CR10) 2011; 19 B Mariusz (269_CR1) 2023; 40 B Samir (269_CR6) 2023; 149 L Mubaraali (269_CR15) 2020; 76 X Zhu (269_CR17) 2019; 138 C Jilei (269_CR8) 2023; 38 Z Chen (269_CR16) 2019; 133 269_CR20 S Guo (269_CR21) 2018; 18 Y Jin (269_CR9) 2023; 38 B Yang (269_CR13) 2019; 122  | 
    
| References_xml | – volume: 38 start-page: 176 issue: 08 year: 2023 ident: 269_CR8 publication-title: Therm Power Eng – volume: 18 start-page: 1429 issue: 5 year: 2018 ident: 269_CR21 publication-title: Sensors doi: 10.3390/s18051429 – ident: 269_CR11 – volume: 138 start-page: 526 year: 2019 ident: 269_CR17 publication-title: Measurement doi: 10.1016/j.measurement.2019.02.022 – volume: 6 start-page: 1083 year: 2020 ident: 269_CR3 publication-title: Energy Rep doi: 10.1016/j.egyr.2020.04.029 – volume: 122 start-page: 692 year: 2019 ident: 269_CR13 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.12.051 – volume: 133 start-page: 106272 year: 2019 ident: 269_CR16 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2019.106272 – volume: 11 start-page: 832 issue: 8 year: 2023 ident: 269_CR5 publication-title: Machines doi: 10.3390/machines11080832 – volume: 96 start-page: 106703 year: 2020 ident: 269_CR18 publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2020.106703 – volume: 110 start-page: 349 year: 2018 ident: 269_CR12 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.03.025 – ident: 269_CR20 – volume: 219 start-page: 119546 issue: P2 year: 2023 ident: 269_CR2 publication-title: Renew Energy – volume: 149 start-page: 107284 issue: 4 year: 2023 ident: 269_CR6 publication-title: Eng Fail Anal – year: 2021 ident: 269_CR4 publication-title: J Braz Soc Mech Sci Eng doi: 10.1007/s40430-021-03136-9 – volume: 38 start-page: 144 issue: 2 year: 2023 ident: 269_CR9 publication-title: Therm Power Eng – volume: 40 start-page: 1 issue: 1 year: 2023 ident: 269_CR1 publication-title: Mater High Temp doi: 10.1080/09603409.2022.2160896 – volume: 13 start-page: 3113 issue: 10 year: 2022 ident: 269_CR14 publication-title: Int J Mach Learn Cyb doi: 10.1007/s13042-022-01583-x – volume: 76 start-page: 103079 issue: 4 year: 2020 ident: 269_CR15 publication-title: Microprocess Microsyst doi: 10.1016/j.micpro.2020.103079 – volume: 41 start-page: 2417 issue: 7 year: 2021 ident: 269_CR19 publication-title: Chin J Electr Eng – volume: 19 start-page: 1280 issue: 5 year: 2011 ident: 269_CR10 publication-title: Simul Model Pract Theory doi: 10.1016/j.simpat.2011.01.005 – volume: 39 start-page: 572 issue: 7 year: 2022 ident: 269_CR7 publication-title: J Ind Prod Eng  | 
    
| SSID | ssj0002857390 | 
    
| Score | 2.3128273 | 
    
| Snippet | To address the challenges of insufficient precision and limited adaptability in conventional rotor fault diagnosis methods, we propose a new approach using... Abstract To address the challenges of insufficient precision and limited adaptability in conventional rotor fault diagnosis methods, we propose a new approach...  | 
    
| SourceID | doaj unpaywall proquest crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 41 | 
    
| SubjectTerms | Accuracy Artificial Intelligence CNN Computer Science Deep learning Engineering Experiments Fault diagnosis Neural networks Rotor systems Turbines Wavelet transforms  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central (subscription) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QE4UJ5ioSAfuNGIxXYc54BQn6qQWCFEpXKyJn60lbbJst2K5d_j8TopvVScEiWRHM-MPQ_PfAPwzqkauVBY1G4iC9loOt_1VYECMfrPNqClQuGvU3V8Ir-clqcbMO1rYSitst8T00btOksx8g-CR1sl7qW1-Dz_VVDXKDpd7VtoYG6t4D4liLF7sMkJGWsEm3uH02_fh6gL12UVvfxcPZNq6CSZJAV1dSV_pC5WtzRUAvK_ZX0OB6YP4f51O8c_v3E2-0cnHT2GR9mYZLtr7j-BDd8-ha2-UQPL6_YZ_DxYJ9RdXLEuMOLrJYuqJjrFni266HUzUmaOdS27SEGGeE_p6Fks4xAEe5kuKWmc4ews0mZ5fvkcTo4Of-wfF7mnQmGFkqsilBW3VYXaK-6sjPqdALecaKyqq6ADD9x7FBrDRypJrRwPdlIhaq18oywXL2DUdq1_CayprWzQhqB1KQMqLK1KhbxSiMZN7Bje93Q08zV0hhlAkhPVTaS6SVQ3qzHsEamHLwn2Oj3oFmcmryLjXCgF19Gu8LXUUjS1kEFWFqPTROOOYbtnlMlr8crcSM4Ydnrm3by-65d2Bgb_xwxe3T34a3jAScpSKsw2jJaLa_8mGjTL5m2W0r9fKPOa priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELbQcoA9lPKoui2tfOitG7G1Hds5lscKVYITSHCyxq92pSVBu4tK_33H3mx4CKH2lChO4sTfWDPjmflMyBcvK2BcQlH5kSiE1Sm-G1QBHAD9ZxfBpULhs3N5eil-XJVXLU1OqoV5Fr8_mItkMRRp09XkLlQF2ovrqKRkDszKo249helSof_e1sW8_OgT3ZMp-p_YlV0otE827upb-PMbptNH2mb8lrxpzUT6fYnrNlkL9Q7ZWm3BQNsZuUP6j_gEd8n18TJxbjKnTaQJvxuKKgWd30BnDXrXNCktT5uaTvJiAp6ntPNW_LDDRG-ZDzk5nML0ZzObLH7d7JHL8cnF0WnR7p1QOC7FfRFLxZxSoINk3gnU44lYy3PrZKWijiyyEIBriN9S6anyLLqRAtBaBisd4-9Ir27q8J5QWzlhwcWodSkiSCidzAW7gnPrR25Avq5G1dwuKTJMR4acMTCIgckYmPsBOUwD392Z6K3zBUTdtLPFeB9LzjTaD6ESWnBbcRGFcoDOUep3QPZXsJl2zs0NZ2jNoratsHm4gvKh-bVPGnZw_8MffPi_t38kmyzJYE6B2Se9xewufEJDZmE_Zwn-CxEa6uk priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE4UJ5ioSAfuNFsF9vx41goVYVExYGV2pPlZ1mxTVbbrLrl12M7DyhCCMQpUewofowz39gz3wC8ckxqTJgupJvSghqRznc9LzTROtrPNmibAoU_nrDjGf1wWp5uwWEfC5O93fsjyTamIbE0Vc3-0oX9IfCNJhxRpFSsyYiQxWYSi2_BNisjIh_B9uzk08FZyivHSdoBnMouXub3L9_QSZm6_wbeHI5I78LtdbXU11d6sfhJCx3tgO_b3zqffJ2sGzOx336hdvzfDt6Hex1MRQetXD2ALV89hJ0-BQTq_giP4OywddWbX6I6oCQxFygqsWhue7Sqoz2Pkpp0qK7QPG9fxPvk6N4JfPxEItTMl-yOjvTivF7Nmy8Xj2F29P7zu-Oiy9ZQWMLopgglx5ZzLTzDztKIHBKVlyPGMsmDCDhg7zUROrxJwa7c4WCnXGshmDfMYvIERlVd-aeAjLTUaBuCECUNmunSshwiTAkxbmrH8LqfL7VsSTnUQL-cR07FkVN55NRmDG_TlA41E6F2flCvzlW3PpVzoSRYRMTiJRWUGElooNzqaI6l745htxcI1a3yS0VwxM9Rv8tYvNfP6Y_iPzVpbxCkv-jBs3-r_hzu4CQ52elmF0bNau1fROjUmJfdyvgO1WASow priority: 102 providerName: Unpaywall  | 
    
| Title | Diagnosis of steam turbine rotor based on improved convolutional neural network algorithm | 
    
| URI | https://link.springer.com/article/10.1007/s44163-025-00269-x https://www.proquest.com/docview/3213928493 https://link.springer.com/content/pdf/10.1007/s44163-025-00269-x.pdf https://doaj.org/article/ddf5328024e94843b934f47ca7689143  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 5 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2731-0809 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002857390 issn: 2731-0809 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2731-0809 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002857390 issn: 2731-0809 databaseCode: M~E dateStart: 20210101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2731-0809 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002857390 issn: 2731-0809 databaseCode: BENPR dateStart: 20211201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2731-0809 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002857390 issn: 2731-0809 databaseCode: AAJSJ dateStart: 20211201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2731-0809 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002857390 issn: 2731-0809 databaseCode: C6C dateStart: 20211201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2731-0809 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002857390 issn: 2731-0809 databaseCode: C24 dateStart: 20211201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagHIBDeYu0JfKBG10RbK8fxzakqpAaVYhI7cma9QOC0t0qTUV66W_v2LsJ6QU4cPGudlZae8beb8aeByHvvTTAuITC-IEoRKXT-W5QBXAAtJ9dBJcChU_G8ngivpyVZxulvpJPWJseuGXcR-9jyZlGKAlGaMErw0UUygHqyQbBPv19B9psGFM_85ZRqdCa76JkcqycSKpHkaq3JrvDFMt7SJQT9t_TMtcHo0_J4-v6Em5-wWy2gT1Hz8l2pzTSg7azL8iDUL8kz1YFGWi3Pl-R88-t49z0ijaRJvldUIQUNH4DnTdoXdMEWp42NZ3mzQS8T27n3fTDT6T0lvmSncMpzL438-nix8VrMjkafRseF13thMJxKZZFLBVzSoEOknknEMdTYi3PKyeNijqyyEIAriF-SqGnyrPoBgpAaxkq6Rh_Q7bqpg5vCa2MExW4GLUuRQQJpZM5YFdwXvmB65EPKz7ayzZFhl0nQ85ct8h1m7lulz1ymFi9fjOlt84PUOi2E7r9m9B7ZG8lKNutuSvLGWqziLYGyfsr4f0m_6lL-2sB_8MIdv7HCHbJE5bmYnaM2SNbi_l1eIfqzaLqk0eHo_Hp1z55OGQitXLYz7Mb25PbEdIn49OD8zstbPpz | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTxQxFG8IHNCD38ZV1B70JBOXttOPAzEikEVgYwwkeKqdfiDJMrPuLmH55_zb7Ot2BrkQL5x2sjNJZ973a997P4TeOa4ModwUyvVZwSoJ57teFIYaE_NnG4yFRuHDIR8cs68n5ckS-tP2wkBZZWsTk6F2jYU98o-UxFgl2lJFP41_F4AaBaerLYSGydAKbjONGMuNHfv-6jKmcNPNve3I7_eE7O4cfRkUGWWgsJSzeRFKQawQRnpOnGXR48EIKkcry5UIMpBAvDdUmrABTZrCkWD7whgpua-4hcEH0QWsMMpUTP5WtnaG3753uzxEloKqfu7WST17DEKgAlBkIf9RxfyGR0zAATei3e6A9j5avajH5urSjEb_-MDdR-hBDl7x54W0PUZLvn6CHrbAEDjbiafox_aigO9sipuAQY7OcXRtMQn3eNLELB-D83S4qfFZ2tSI11D-ntUgLgFjNtNPKlLHZnQaeTH7df4MHd8JdZ-j5bqp_QuEK2VZZWwIUpYsGG5Ky1PjMKO0cn3bQx9aOurxYlSH7oYyJ6rrSHWdqK7nPbQFpO6ehDHb6Y9mcqqz1mrnQkmJjHGMV0wyWinKAhPWxCQN1u2htZZROuv-VF9Lag-tt8y7vn3bK613DP6PL3h5--Jv0erg6PBAH-wN91-hewQkLpXhrKHl2eTCv47B1Kx6kyUWo593rSR_AfE2MNU | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw1KpaieXAjhgo4AOcaNTBdhznUCHKdNRSGFWISuVkHC-l0jQZZqbq9Bf5Kt7zOCm9VFx6ShRHcvL257cR8sbJ0jAuTVa6vshEpTC-64vMcGPAf7bBWCwU_jqSu4fi81F-tEL-tLUwmFbZysQoqF1j8Yx8kzOwVUCWlnwzpLSIg8Hww-R3hhOkMNLajtMwacyC24rtxlKRx76_OAd3bra1NwDcv2VsuPP9026WJg5klkuxyEJeMFsURnnJnBWg_bAdleOVlWURVGCBeW-4MuE9FmwWjgXbL4xRSvpKWmyCAOpgDYNfICTWtndGB9-6Ex-mcljop8qdWL8n0BzKcKIs-kJltriiHeMQgSuWbxesvUtun9UTc3FuxuN_9OHwAbmXDFn6cUl5D8mKrx-R--2QCJpkxmPyY7BM5juZ0SZQpKlTCmoOHHJPpw14_BQVqaNNTU_iAQfcYyp8YgnYAltuxktMWKdmfAy4mP86fUIObwS6T8lq3dT-GaFVaUVlbAhK5SIYaXIrYxGx4Lxyfdsj71o46smybYfuGjRHqGuAuo5Q14se2UZQd29iy-34oJke68TB2rmQc6bApvGlUIJXJRdBFNaAw4b79sh6iyid5MBMX1Jtj2y0yLtcvu6TNjoE_8cfPL9-89fkFjCL_rI32n9B7jAkuJiRs05W59Mz_xLsqnn1KhEsJT9vmkf-Agc6NQQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE4UJ5ioSAfuNFsF9vx41goVYVExYGV2pPlZ1mxTVbbrLrl12M7DyhCCMQpUewofowz39gz3wC8ckxqTJgupJvSghqRznc9LzTROtrPNmibAoU_nrDjGf1wWp5uwWEfC5O93fsjyTamIbE0Vc3-0oX9IfCNJhxRpFSsyYiQxWYSi2_BNisjIh_B9uzk08FZyivHSdoBnMouXub3L9_QSZm6_wbeHI5I78LtdbXU11d6sfhJCx3tgO_b3zqffJ2sGzOx336hdvzfDt6Hex1MRQetXD2ALV89hJ0-BQTq_giP4OywddWbX6I6oCQxFygqsWhue7Sqoz2Pkpp0qK7QPG9fxPvk6N4JfPxEItTMl-yOjvTivF7Nmy8Xj2F29P7zu-Oiy9ZQWMLopgglx5ZzLTzDztKIHBKVlyPGMsmDCDhg7zUROrxJwa7c4WCnXGshmDfMYvIERlVd-aeAjLTUaBuCECUNmunSshwiTAkxbmrH8LqfL7VsSTnUQL-cR07FkVN55NRmDG_TlA41E6F2flCvzlW3PpVzoSRYRMTiJRWUGElooNzqaI6l745htxcI1a3yS0VwxM9Rv8tYvNfP6Y_iPzVpbxCkv-jBs3-r_hzu4CQ52elmF0bNau1fROjUmJfdyvgO1WASow | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosis+of+steam+turbine+rotor+based+on+improved+convolutional+neural+network+algorithm&rft.jtitle=Discover+Artificial+Intelligence&rft.au=Zhou%2C+Zhongtao&rft.au=Zhou%2C+Miao&rft.au=Huang%2C+Hui&rft.au=Li%2C+Yanghai&rft.date=2025-12-01&rft.issn=2731-0809&rft.eissn=2731-0809&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1007%2Fs44163-025-00269-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s44163_025_00269_x | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2731-0809&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2731-0809&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2731-0809&client=summon |