Diagnosis of steam turbine rotor based on improved convolutional neural network algorithm

To address the challenges of insufficient precision and limited adaptability in conventional rotor fault diagnosis methods, we propose a new approach using convolutional neural networks. This aims to effectively identify complex and diverse fault patterns in a steam turbine rotor through a thorough...

Full description

Saved in:
Bibliographic Details
Published inDiscover Artificial Intelligence Vol. 5; no. 1; pp. 41 - 14
Main Authors Zhou, Zhongtao, Zhou, Miao, Huang, Hui, Li, Yanghai, Xu, Wanbing
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2025
Springer Nature B.V
Springer
Subjects
Online AccessGet full text
ISSN2731-0809
2731-0809
DOI10.1007/s44163-025-00269-x

Cover

More Information
Summary:To address the challenges of insufficient precision and limited adaptability in conventional rotor fault diagnosis methods, we propose a new approach using convolutional neural networks. This aims to effectively identify complex and diverse fault patterns in a steam turbine rotor through a thorough examination and in-depth investigation. An HZXT-009 sliding ball bearing simulation rig was used to conduct fault tests such as rotor misalignment, unbalance, and touching faults. The data collected experimentally was used to perform a comprehensive analysis of the temporal and spectral signal characteristics. Use the obtained data to train and enhance the convolutional neural network fault diagnosis model. The results of the model testing accuracy can reach 99%. The generalization test is introduced to verify that the model trained by the simulation test data can detect multi-condition faults in the operation of the power plant. The network detection results show that the accuracy rate can reach 97.5%, which is expected to be widely used in actual production and improve the efficiency and accuracy of fault diagnosis of rotor system.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2731-0809
2731-0809
DOI:10.1007/s44163-025-00269-x