Action of Mitochondrial DNA Polymerase γ at Sites of Base Loss or Oxidative Damage

Mitochondrial DNA is subject to oxidative damage generating 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG) residues and to spontaneous or induced base loss generating abasic sites. Synthetic oligonucleotides containing these lesions were prepared and used as templates to determine their effects...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 270; no. 16; pp. 9202 - 9206
Main Authors Pinz, Kevin G., Shibutani, Shinya, Bogenhagen, Daniel F.
Format Journal Article
LanguageEnglish
Published United States 21.04.1995
Subjects
Online AccessGet full text
ISSN0021-9258
DOI10.1074/jbc.270.16.9202

Cover

More Information
Summary:Mitochondrial DNA is subject to oxidative damage generating 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG) residues and to spontaneous or induced base loss generating abasic sites. Synthetic oligonucleotides containing these lesions were prepared and used as templates to determine their effects on the action of Xenopus laevis DNA polymerase gamma. An analogue of an abasic site in DNA, tetrahydrofuran, was found to inhibit elongation by DNA polymerase gamma. When the DNA polymerase was able to complete translesional synthesis, a dA residue was incorporated opposite the abasic site. In contrast, elongation by DNA polymerase gamma was not inhibited by an 8-oxo-dG residue in the template strand. The polymerase inserted dA opposite 8-oxo-dG in approximately 27% of the extended products. The effects of these lesions on the 3'-->5' exonuclease proofreading activity of DNA polymerase gamma were also investigated. The 3'-->5' exonuclease activity excised any of the four normal bases positioned opposite either a tetrahydrofuran residue or 8-oxo-dG, suggesting that proofreading may not play a major role in avoiding misincorporation at abasic sites or 8-oxo-dG residues in the template. Thus, both of these lesions have the prospect of causing high rates of mutation during mtDNA replication.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0021-9258
DOI:10.1074/jbc.270.16.9202