AI-based non-invasive imaging technologies for early autism spectrum disorder diagnosis: A short review and future directions

Autism Spectrum Disorder (ASD) is a neurological condition, with recent statistics from the CDC indicating a rising prevalence of ASD diagnoses among infants and children. This trend emphasizes the critical importance of early detection, as timely diagnosis facilitates early intervention and enhance...

Full description

Saved in:
Bibliographic Details
Published inArtificial intelligence in medicine Vol. 161; p. 103074
Main Authors Abdelrahim, Mostafa, Khudri, Mohamed, Elnakib, Ahmed, Shehata, Mohamed, Weafer, Kate, Khalil, Ashraf, Saleh, Gehad A., Batouty, Nihal M., Ghazal, Mohammed, Contractor, Sohail, Barnes, Gregory, El-Baz, Ayman
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.03.2025
Subjects
Online AccessGet full text
ISSN0933-3657
1873-2860
1873-2860
DOI10.1016/j.artmed.2025.103074

Cover

More Information
Summary:Autism Spectrum Disorder (ASD) is a neurological condition, with recent statistics from the CDC indicating a rising prevalence of ASD diagnoses among infants and children. This trend emphasizes the critical importance of early detection, as timely diagnosis facilitates early intervention and enhances treatment outcomes. Consequently, there is an increasing urgency for research to develop innovative tools capable of accurately and objectively identifying ASD in its earliest stages. This paper offers a short overview of recent advancements in non-invasive technology for early ASD diagnosis, focusing on an imaging modality, structural MRI technique, which has shown promising results in early ASD diagnosis. This brief review aims to address several key questions: (i) Which imaging radiomics are associated with ASD? (ii) Is the parcellation step of the brain cortex necessary to improve the diagnostic accuracy of ASD? (iii) What databases are available to researchers interested in developing non-invasive technology for ASD? (iv) How can artificial intelligence tools contribute to improving the diagnostic accuracy of ASD? Finally, our review will highlight future trends in ASD diagnostic efforts.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ISSN:0933-3657
1873-2860
1873-2860
DOI:10.1016/j.artmed.2025.103074