Assessment of PERSIANN-CCS, PERSIANN-CDR, SM2RAIN-ASCAT, and CHIRPS-2.0 Rainfall Products over a Semi-Arid Subtropical Climatic Region

This study compares the performance of four satellite-based rainfall products (SRPs) (PERSIANN-CCS, PERSIANN-CDR, SM2RAIN-ASCAT, and CHIRPS-2.0) in a semi-arid subtropical region. As a case study, Punjab Province of Pakistan was considered for this assessment. Using observations from in-situ meteoro...

Full description

Saved in:
Bibliographic Details
Published inWater (Basel) Vol. 14; no. 2; p. 147
Main Authors Anjum, Muhammad Naveed, Irfan, Muhammad, Waseem, Muhammad, Leta, Megersa Kebede, Niazi, Usama Muhammad, ur Rahman, Saif, Ghanim, Abdulnoor, Mukhtar, Muhammad Ahsan, Nadeem, Muhammad Umer
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2022
Subjects
Online AccessGet full text
ISSN2073-4441
2073-4441
DOI10.3390/w14020147

Cover

More Information
Summary:This study compares the performance of four satellite-based rainfall products (SRPs) (PERSIANN-CCS, PERSIANN-CDR, SM2RAIN-ASCAT, and CHIRPS-2.0) in a semi-arid subtropical region. As a case study, Punjab Province of Pakistan was considered for this assessment. Using observations from in-situ meteorological stations, the uncertainty in daily, monthly, seasonal, and annual rainfall estimates of SRPs at pixel and regional scales during 2010–2018 were examined. Several evaluation indices (Correlation Coefficient (CC), Root Mean Square Error (RMSE), Bias, and relative Bias (rBias), as well as categorical indices (Probability of Detection (POD), Critical Success Index (CSI), and False Alarm Ration (FAR)) were used to assess the performance of the SRPs. The following findings were found: (1) CHIRPS-2.0 and SM2RAIN-ASCAT products were capable of tracking the spatiotemporal variability of observed rainfall, (2) all SRPs had higher overall performances in the northwestern parts of the province than the other parts, (3) all SRP estimates were in better agreement with ground-based monthly observations than daily records, and (4) on the seasonal scale, CHIRPS-2.0 and SM2RAIN-ASCAT were better than PERSIANN-CCS and PERSIANN. In all seasons, CHIRPS-2.0 and SM2RAIN-ASCAT outperformed PERSIANN-CCS and PERSIANN-CDR. Based on our findings, we recommend that hydrometeorological investigations in Pakistan’s Punjab Province employ monthly estimates of CHIRPS-2.0 and SM2RAIN-ASCAT products.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2073-4441
2073-4441
DOI:10.3390/w14020147