An efficient neural network approach to tracking control of an autonomous surface vehicle with unknown dynamics

► The tracking control problem of autonomous surface vehicles is addressed. ► An efficient neural network approach is proposed for real-time tracking control. ► The network has a single-layer structure by utilising vehicle regressor dynamics. ► The learning algorithm derived from Lyapunov stability...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 40; no. 5; pp. 1629 - 1635
Main Authors Pan, Chang-Zhong, Lai, Xu-Zhi, Yang, Simon X., Wu, Min
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.04.2013
Elsevier
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2012.09.008

Cover

More Information
Summary:► The tracking control problem of autonomous surface vehicles is addressed. ► An efficient neural network approach is proposed for real-time tracking control. ► The network has a single-layer structure by utilising vehicle regressor dynamics. ► The learning algorithm derived from Lyapunov stability analysis is efficient. ► Satisfactory tracking performance is achieved through on-line learning. This paper proposes an efficient neural network (NN) approach to tracking control of an autonomous surface vehicle (ASV) with completely unknown vehicle dynamics and subject to significant uncertainties. The proposed NN has a single-layer structure by utilising the vehicle regressor dynamics that expresses the highly nonlinear dynamics in terms of the known and unknown dynamic parameters. The learning algorithm of the NN is simple yet computationally efficient. It is derived from Lyapunov stability analysis, which guarantees that all the error signals in the control system are uniformly ultimately bounded (UUB). The proposed NN approach can force the ASV to track the desired trajectory with good control performance through the on-line learning of the NN without any off-line learning procedures. In addition, the proposed controller is capable of compensating bounded unknown disturbances. The effectiveness and efficiency are demonstrated by simulation and comparison studies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0957-4174
1873-6793
DOI:10.1016/j.eswa.2012.09.008