Exponential Lower Bound for Berge-Ramsey Problems

We give an exponential lower bound for the smallest $$N$$ N such that no matter how we c -color the edges of a complete $$r$$ r -uniform hypergraph on $$N$$ N vertices, we can always find a monochromatic Berge- $$K_n$$ K n .

Saved in:
Bibliographic Details
Published inGraphs and combinatorics Vol. 37; no. 4; pp. 1433 - 1435
Main Author Pálvölgyi, Dömötör
Format Journal Article
LanguageEnglish
Published Tokyo Springer Japan 01.07.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0911-0119
1435-5914
1435-5914
DOI10.1007/s00373-021-02328-3

Cover

More Information
Summary:We give an exponential lower bound for the smallest $$N$$ N such that no matter how we c -color the edges of a complete $$r$$ r -uniform hypergraph on $$N$$ N vertices, we can always find a monochromatic Berge- $$K_n$$ K n .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0911-0119
1435-5914
1435-5914
DOI:10.1007/s00373-021-02328-3