Exponential Lower Bound for Berge-Ramsey Problems
We give an exponential lower bound for the smallest $$N$$ N such that no matter how we c -color the edges of a complete $$r$$ r -uniform hypergraph on $$N$$ N vertices, we can always find a monochromatic Berge- $$K_n$$ K n .
        Saved in:
      
    
          | Published in | Graphs and combinatorics Vol. 37; no. 4; pp. 1433 - 1435 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        Tokyo
          Springer Japan
    
        01.07.2021
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0911-0119 1435-5914 1435-5914  | 
| DOI | 10.1007/s00373-021-02328-3 | 
Cover
| Summary: | We give an exponential lower bound for the smallest
$$N$$
N
such that no matter how we
c
-color the edges of a complete
$$r$$
r
-uniform hypergraph on
$$N$$
N
vertices, we can always find a monochromatic Berge-
$$K_n$$
K
n
. | 
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
| ISSN: | 0911-0119 1435-5914 1435-5914  | 
| DOI: | 10.1007/s00373-021-02328-3 |