Influence of Plasma Pressure Fluctuation on RF Wave Propagation

Pressure fluctuations in the plasma sheath from spacecraft reentry affect radiofrequency(RF) wave propagation.The influence of these fluctuations on wave propagation and wave properties is studied using methods derived by synthesizing the compressible turbulent flow theory,plasma theory,and electrom...

Full description

Saved in:
Bibliographic Details
Published inPlasma science & technology Vol. 18; no. 2; pp. 131 - 137
Main Author 刘智惟 包为民 李小平 刘东林 周辉
Format Journal Article
LanguageEnglish
Published 01.02.2016
Subjects
Online AccessGet full text
ISSN1009-0630
DOI10.1088/1009-0630/18/2/06

Cover

More Information
Summary:Pressure fluctuations in the plasma sheath from spacecraft reentry affect radiofrequency(RF) wave propagation.The influence of these fluctuations on wave propagation and wave properties is studied using methods derived by synthesizing the compressible turbulent flow theory,plasma theory,and electromagnetic wave theory.We study these influences on wave propagation at GPS and Ka frequencies during typical reentry by adopting stratified modeling.We analyzed the variations in reflection and transmission properties induced by pressure fluctuations.Our results show that,at the GPS frequency,if the waves are not totally reflected then the pressure fluctuations can remarkably affect reflection,transmission,and absorption properties.In extreme situations,the fluctuations can even cause blackout.At the Ka frequency,the influences are obvious when the waves are not totally transmitted.The influences are more pronounced at the GPS frequency than at the Ka frequency.This suggests that the latter can mitigate blackout by reducing both the reflection and the absorption of waves,as well as the influences of plasma fluctuations on wave propagation.Given that communication links with the reentry vehicles are susceptible to plasma pressure fluctuations,the influences on link budgets should be taken into consideration.
Bibliography:LIU Zhiwei , BAO Weimin, LI Xiaoping , LIU Donglin , ZHOU Hui (School of Aerospace Science & Technology, Xidian University, Xi'an 710126, China)
Pressure fluctuations in the plasma sheath from spacecraft reentry affect radiofrequency(RF) wave propagation.The influence of these fluctuations on wave propagation and wave properties is studied using methods derived by synthesizing the compressible turbulent flow theory,plasma theory,and electromagnetic wave theory.We study these influences on wave propagation at GPS and Ka frequencies during typical reentry by adopting stratified modeling.We analyzed the variations in reflection and transmission properties induced by pressure fluctuations.Our results show that,at the GPS frequency,if the waves are not totally reflected then the pressure fluctuations can remarkably affect reflection,transmission,and absorption properties.In extreme situations,the fluctuations can even cause blackout.At the Ka frequency,the influences are obvious when the waves are not totally transmitted.The influences are more pronounced at the GPS frequency than at the Ka frequency.This suggests that the latter can mitigate blackout by reducing both the reflection and the absorption of waves,as well as the influences of plasma fluctuations on wave propagation.Given that communication links with the reentry vehicles are susceptible to plasma pressure fluctuations,the influences on link budgets should be taken into consideration.
plasma sheath pressure fluctuation wave propagation
34-1187/TL
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1009-0630
DOI:10.1088/1009-0630/18/2/06