Variational Bayes estimation of hierarchical Dirichlet-multinomial mixtures for text clustering
In this paper, we formulate a hierarchical Bayesian version of the Mixture of Unigrams model for text clustering and approach its posterior inference through variational inference. We compute the explicit expression of the variational objective function for our hierarchical model under a mean-field...
Saved in:
| Published in | Computational statistics Vol. 38; no. 4; pp. 2015 - 2051 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0943-4062 1613-9658 1613-9658 |
| DOI | 10.1007/s00180-023-01350-8 |
Cover
| Summary: | In this paper, we formulate a hierarchical Bayesian version of the Mixture of Unigrams model for text clustering and approach its posterior inference through variational inference. We compute the explicit expression of the variational objective function for our hierarchical model under a mean-field approximation. We then derive the update equations of a suitable algorithm based on coordinate ascent to find local maxima of the variational target, and estimate the model parameters through the optimized variational hyperparameters. The advantages of variational algorithms over traditional Markov Chain Monte Carlo methods based on iterative posterior sampling are also discussed in detail. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0943-4062 1613-9658 1613-9658 |
| DOI: | 10.1007/s00180-023-01350-8 |