A Novel Bézier LSTM Model: A Case Study in Corn Analysis
Accurate prediction of agricultural product prices is instrumental in providing rational guidance for agricultural production planning and the development of the agricultural industry. By constructing an end-to-end agricultural product price prediction model, incorporating a segmented Bézier curve f...
        Saved in:
      
    
          | Published in | Mathematics (Basel) Vol. 12; no. 15; p. 2308 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.08.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2227-7390 2227-7390  | 
| DOI | 10.3390/math12152308 | 
Cover
| Abstract | Accurate prediction of agricultural product prices is instrumental in providing rational guidance for agricultural production planning and the development of the agricultural industry. By constructing an end-to-end agricultural product price prediction model, incorporating a segmented Bézier curve fitting algorithm and Long Short-Term Memory (LSTM) network, this study selects corn futures prices listed on the Dalian Commodity Exchange as the research subject to predict and validate their price trends. Firstly, corn futures prices are fitted using segmented Bézier curves. Subsequently, the fitted price sequence is employed as a feature and input into an LSTM network for training to obtain a price prediction model. Finally, the prediction results of the Bézier curve-based LSTM model are compared and analyzed with traditional LSTM, ARIMA (Autoregressive Integrated Moving Average Model), VMD-LSTM, and SVR (Support Vector Regression) models. The research findings indicate that the proposed Bézier curve-based LSTM model demonstrates significant predictive advantages in corn futures price prediction. Through comparison with traditional models, the effectiveness of this model is affirmed. Consequently, the Bézier curve-based LSTM model proposed in this paper can serve as a crucial reference for agricultural product price prediction, providing effective guidance for agricultural production planning and industry development. | 
    
|---|---|
| AbstractList | Accurate prediction of agricultural product prices is instrumental in providing rational guidance for agricultural production planning and the development of the agricultural industry. By constructing an end-to-end agricultural product price prediction model, incorporating a segmented Bézier curve fitting algorithm and Long Short-Term Memory (LSTM) network, this study selects corn futures prices listed on the Dalian Commodity Exchange as the research subject to predict and validate their price trends. Firstly, corn futures prices are fitted using segmented Bézier curves. Subsequently, the fitted price sequence is employed as a feature and input into an LSTM network for training to obtain a price prediction model. Finally, the prediction results of the Bézier curve-based LSTM model are compared and analyzed with traditional LSTM, ARIMA (Autoregressive Integrated Moving Average Model), VMD-LSTM, and SVR (Support Vector Regression) models. The research findings indicate that the proposed Bézier curve-based LSTM model demonstrates significant predictive advantages in corn futures price prediction. Through comparison with traditional models, the effectiveness of this model is affirmed. Consequently, the Bézier curve-based LSTM model proposed in this paper can serve as a crucial reference for agricultural product price prediction, providing effective guidance for agricultural production planning and industry development. | 
    
| Audience | Academic | 
    
| Author | Zhao, Qingliang Chen, Junji Feng, Xiaobin Wang, Yiduo  | 
    
| Author_xml | – sequence: 1 givenname: Qingliang surname: Zhao fullname: Zhao, Qingliang – sequence: 2 givenname: Junji surname: Chen fullname: Chen, Junji – sequence: 3 givenname: Xiaobin surname: Feng fullname: Feng, Xiaobin – sequence: 4 givenname: Yiduo surname: Wang fullname: Wang, Yiduo  | 
    
| BookMark | eNp9kc9O3DAQxq0KpALl1gewxJVQ_7fDLayAIi3lAD1bk9ihXmXjxc6Ctm_U5-DFapqq4tTxYUYz3_w0-nyI9sY4eoQ-U3LGeU2-rGH6QRmVjBPzAR0wxnSly2DvXf0RHee8IiVqyo2oD1Dd4G_x2Q_44vXXz-ATXt4_3OLb6Pxwjhu8gOzx_bR1OxxGvIhpxM0Iwy6H_Ant9zBkf_w3H6HvV5cPi6_V8u76ZtEsq44rPlVMmrrtwBDZkVaoHhhlsjdeUCI1ME2pcr5m1EsCjrcCQCnJOtW3JWvt-BG6mbkuwspuUlhD2tkIwf5pxPRoIU2hG7xl2nlBlFDaMME9FJY0jDrpJWgNbWFVM2s7bmD3AsPwD0iJfbPRvrex6E9m_SbFp63Pk13FbSoGZMtJXUw0gouiOptVj1COCGMfpwRdec6vQ1d-qQ-l3xgiJBVKvS2czgtdijkn3___it_hRI5N | 
    
| Cites_doi | 10.1007/s10462-020-09838-1 10.3390/math11010245 10.1109/ACCESS.2023.3314329 10.1007/s41096-022-00128-3 10.3390/agriculture12020256 10.3390/agriculture13091663 10.1007/s00521-021-06621-3 10.1016/j.chaos.2021.110822 10.1016/j.eswa.2021.116189 10.1016/j.asoc.2023.110939 10.1109/TNNLS.2020.2978942 10.1039/B918972F 10.1166/asl.2011.1406 10.1016/j.engappai.2023.105899 10.1007/s00521-020-05250-6 10.1007/s13253-010-0025-7 10.1016/j.physa.2019.123245 10.1007/s11760-024-03116-1 10.1080/08839514.2021.1981659 10.1016/j.patcog.2007.01.019 10.1109/TCSS.2019.2914499 10.1109/TIP.2018.2855422 10.1109/ACCESS.2023.3275534 10.3390/math8040541 10.1016/0010-4485(83)90171-9 10.1002/for.3980020306 10.1287/mnsc.1040.0308 10.1016/S0925-2312(01)00702-0 10.2166/hydro.2001.0014 10.20944/preprints202308.1206.v1 10.35940/ijitee.B1226.1292S19 10.1016/j.aei.2017.11.002 10.1016/j.knosys.2017.03.027 10.3390/electronics11020232 10.1002/agr.21773 10.1016/j.asoc.2021.107472 10.1016/S0360-8352(98)00066-7 10.1007/s11595-018-1781-4 10.1016/j.compag.2021.106120 10.1109/TNNLS.2018.2791507 10.1016/j.eswa.2023.119778 10.1073/pnas.1413108112 10.1038/s41598-022-16741-y 10.1111/j.1467-9892.1990.tb00048.x 10.1371/journal.pone.0270553 10.1016/j.asoc.2023.111009 10.1109/JIOT.2024.3379361 10.3390/math11020383  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/math12152308 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database (Proquest) ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics Agriculture  | 
    
| EISSN | 2227-7390 | 
    
| ExternalDocumentID | oai_doaj_org_article_27de4064678243eaaa65821d5e5a77ab 10.3390/math12152308 A804514664 10_3390_math12152308  | 
    
| GeographicLocations | United Kingdom China  | 
    
| GeographicLocations_xml | – name: United Kingdom – name: China  | 
    
| GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U ADTOC IPNFZ PUEGO RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c363t-2589bca805c0b46fa2125f8e41057a27116de921e50ad3b4aa6652c6fb66577d3 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2227-7390 | 
    
| IngestDate | Fri Oct 03 12:52:35 EDT 2025 Sun Sep 07 11:24:46 EDT 2025 Fri Jul 25 11:59:58 EDT 2025 Mon Oct 20 16:57:04 EDT 2025 Thu Oct 16 04:37:42 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 15 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c363t-2589bca805c0b46fa2125f8e41057a27116de921e50ad3b4aa6652c6fb66577d3 | 
    
| Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3  | 
    
| OpenAccessLink | https://doaj.org/article/27de4064678243eaaa65821d5e5a77ab | 
    
| PQID | 3090918434 | 
    
| PQPubID | 2032364 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_27de4064678243eaaa65821d5e5a77ab unpaywall_primary_10_3390_math12152308 proquest_journals_3090918434 gale_infotracacademiconefile_A804514664 crossref_primary_10_3390_math12152308  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-08-01 | 
    
| PublicationDateYYYYMMDD | 2024-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Mathematics (Basel) | 
    
| PublicationYear | 2024 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | ref_50 Farin (ref_29) 1983; 15 Raflesia (ref_11) 2021; 9 Xu (ref_27) 2021; 184 Wu (ref_44) 2018; 29 ref_19 Mengjiao (ref_42) 2017; 125 ref_17 Weng (ref_7) 2019; 6 Krishna (ref_22) 2023; 18 Purohit (ref_10) 2021; 35 Atalan (ref_5) 2023; 39 Gers (ref_35) 2002; 3 Sokkalingam (ref_14) 2023; 11 ref_24 Bai (ref_23) 2024; 11 ref_21 Akkem (ref_1) 2023; 120 Ren (ref_6) 2020; 541 Gilbert (ref_40) 2005; 51 Brandt (ref_9) 1983; 2 Kantanantha (ref_28) 2010; 15 Interdonato (ref_3) 2022; 190 Wang (ref_32) 2011; 4 Kumar (ref_4) 2022; 23 Liu (ref_13) 2023; 11 Weiping (ref_15) 2021; 146 Otero (ref_25) 2022; 12 Qinghua (ref_51) 2021; 109 Wang (ref_30) 2018; 33 ref_33 Houdt (ref_38) 2020; 53 ref_31 Deo (ref_39) 2018; 35 Shu (ref_36) 2021; 32 Ray (ref_18) 2023; 149 Lagi (ref_26) 2015; 112 Yanxue (ref_49) 2015; 243 Yang (ref_37) 2018; 27 Sivapragasam (ref_20) 2001; 3 Varun (ref_8) 2019; 9 Feng (ref_2) 2023; 149 Sarbajit (ref_52) 2007; 40 Ho (ref_43) 1998; 35 ref_45 Zhao (ref_12) 2021; 33 Jaiswal (ref_34) 2021; 34 Jingxue (ref_46) 2023; 222 Brereton (ref_47) 2010; 135 Piccolo (ref_41) 1990; 11 ref_48 Zhang (ref_16) 2003; 50  | 
    
| References_xml | – volume: 53 start-page: 5929 year: 2020 ident: ref_38 article-title: A review on the long short-term memory model publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09838-1 – ident: ref_45 doi: 10.3390/math11010245 – volume: 11 start-page: 99328 year: 2023 ident: ref_13 article-title: Soybean futures price prediction model based on EEMD-NAGU publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3314329 – volume: 23 start-page: 47 year: 2022 ident: ref_4 article-title: Wavelets based artificial neural network technique for forecasting agricultural prices publication-title: J. Indian Soc. Probab. Stat. doi: 10.1007/s41096-022-00128-3 – ident: ref_17 doi: 10.3390/agriculture12020256 – ident: ref_50 doi: 10.3390/agriculture13091663 – volume: 34 start-page: 4661 year: 2021 ident: ref_34 article-title: Deep long short-term memory based model for agricultural price forecasting publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06621-3 – volume: 146 start-page: 110822 year: 2021 ident: ref_15 article-title: Ensemble forecasting for product futures prices using variational mode decomposition and artificial neural networks publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.110822 – volume: 190 start-page: 116189 year: 2022 ident: ref_3 article-title: Food security prediction from heterogeneous data combining machine and deep learning mSethods publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116189 – volume: 149 start-page: 110939 year: 2023 ident: ref_18 article-title: An ARIMA-LSTM model for predicting volatile agricultural price series with random forest technique publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110939 – volume: 32 start-page: 663 year: 2021 ident: ref_36 article-title: Host-parasite: Graph LSTM-in-LSTM for group activity recognition publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.2978942 – volume: 135 start-page: 230 year: 2010 ident: ref_47 article-title: Support vector machines for classification and regression publication-title: Analyst doi: 10.1039/B918972F – volume: 4 start-page: 1815 year: 2011 ident: ref_32 article-title: A note on variable upper limit integral of Bézier curve publication-title: Adv. Sci. Lett. doi: 10.1166/asl.2011.1406 – volume: 120 start-page: 105899 year: 2023 ident: ref_1 article-title: Smart farming using artificial intelligence: A review publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.105899 – volume: 33 start-page: 837 year: 2021 ident: ref_12 article-title: Futures price prediction of agricultural products based on machine learning publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05250-6 – volume: 15 start-page: 362 year: 2010 ident: ref_28 article-title: Yield and price forecasting for stochastic crop decision planning publication-title: J. Agric. Biol. Environ. Stat. doi: 10.1007/s13253-010-0025-7 – volume: 541 start-page: 123245 year: 2020 ident: ref_6 article-title: A novel granger causality method based on HSIC-Lasso for revealing nonlinear relationship between multivariate time series publication-title: Phys. A Stat. Mech. Its Appl. doi: 10.1016/j.physa.2019.123245 – volume: 18 start-page: 4797 year: 2023 ident: ref_22 article-title: Improving time–frequency resolution in non-stationary signal analysis using a convolutional recurrent neural network publication-title: Signal Image Video Process. doi: 10.1007/s11760-024-03116-1 – volume: 35 start-page: 1388 year: 2021 ident: ref_10 article-title: Time series forecasting of price of agricultural products using hybrid methods publication-title: Appl. Artif. Intell. doi: 10.1080/08839514.2021.1981659 – volume: 40 start-page: 2730 year: 2007 ident: ref_52 article-title: Cubic Bézier approximation of a digitized curve publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2007.01.019 – volume: 6 start-page: 547 year: 2019 ident: ref_7 article-title: Forecasting horticultural products price using ARIMA model and neural network based on a large-Scale data set collected by web crawler publication-title: IEEE Trans. Comput. Soc. Syst. doi: 10.1109/TCSS.2019.2914499 – volume: 27 start-page: 5600 year: 2018 ident: ref_37 article-title: Video captioning by adversarial LSTM publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2855422 – volume: 11 start-page: 48568 year: 2023 ident: ref_14 article-title: Intelligent hybrid ARIMA-NARNET time series model to forecast coconut price publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3275534 – volume: 3 start-page: 115 year: 2002 ident: ref_35 article-title: Learning precise timing with LSTM recurrent networks publication-title: J. Mach. Learn. Res. – ident: ref_31 doi: 10.3390/math8040541 – volume: 15 start-page: 73 year: 1983 ident: ref_29 article-title: Algorithms for rational Bézier curves publication-title: Comput. Aided Des. doi: 10.1016/0010-4485(83)90171-9 – volume: 2 start-page: 237 year: 1983 ident: ref_9 article-title: Price forecasting and evaluation: An application in agriculture publication-title: J. Forecast. doi: 10.1002/for.3980020306 – volume: 51 start-page: 305 year: 2005 ident: ref_40 article-title: An ARIMA supply chain model publication-title: Manag. Sci. doi: 10.1287/mnsc.1040.0308 – volume: 50 start-page: 159 year: 2003 ident: ref_16 article-title: Time series forecasting using a hybrid ARIMA and neural network model publication-title: Neurocomputing doi: 10.1016/S0925-2312(01)00702-0 – volume: 3 start-page: 141 year: 2001 ident: ref_20 article-title: Rainfall and runoff forecasting with SSA–SVM approach publication-title: J. Hydroinform. doi: 10.2166/hydro.2001.0014 – ident: ref_48 doi: 10.20944/preprints202308.1206.v1 – volume: 9 start-page: 729 year: 2019 ident: ref_8 article-title: Agriculture commodity price forecasting using Ml techniques publication-title: Int. J. Innov. Technol. Explor. Eng. doi: 10.35940/ijitee.B1226.1292S19 – volume: 35 start-page: 1 year: 2018 ident: ref_39 article-title: Short-term electricity demand forecasting with MARS, SVR and ARIMA models using aggregated demand data in Queensland, Australia publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2017.11.002 – volume: 125 start-page: 39 year: 2017 ident: ref_42 article-title: Red tide time series forecasting by combining ARIMA and deep belief network publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2017.03.027 – ident: ref_24 doi: 10.3390/electronics11020232 – volume: 39 start-page: 214 year: 2023 ident: ref_5 article-title: Forecasting drinking milk price based on economic, social, and environmental factors using machine learning algorithms publication-title: Agribusines doi: 10.1002/agr.21773 – volume: 109 start-page: 107472 year: 2021 ident: ref_51 article-title: Forecasting Nickel futures price based on the empirical wavelet transform and gradient boosting decision trees publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107472 – volume: 35 start-page: 213 year: 1998 ident: ref_43 article-title: The use of ARIMA models for reliability forecasting and analysis publication-title: Comput. Ind. Eng. doi: 10.1016/S0360-8352(98)00066-7 – volume: 33 start-page: 30 year: 2018 ident: ref_30 article-title: Quasi-distribution appraisal about finite element analysis of multi-functional structure made of honeycomb sandwich materials publication-title: J. Wuhan Univ. Technol. Mater. Sci. Ed. doi: 10.1007/s11595-018-1781-4 – volume: 184 start-page: 106120 year: 2021 ident: ref_27 article-title: Corn cash price forecasting with neural networks publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106120 – volume: 29 start-page: 5185 year: 2018 ident: ref_44 article-title: F-SVM: Combination of feature transformation and SVM learning via convex relaxation publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2018.2791507 – volume: 222 start-page: 119778 year: 2023 ident: ref_46 article-title: PSOSVRPos: WiFi indoor positioning using SVR optimized by PSO publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.119778 – volume: 112 start-page: 6119 year: 2015 ident: ref_26 article-title: Accurate market price formation model with both supply-demand and trend-following for global food prices providing policy recommendations publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1413108112 – volume: 12 start-page: 12819 year: 2022 ident: ref_25 article-title: EMD-based data augmentation method applied to handwriting data for the diagnosis of Essential Tremor using LSTM networks publication-title: Sci. Rep. doi: 10.1038/s41598-022-16741-y – volume: 9 start-page: 784 year: 2021 ident: ref_11 article-title: Agricultural commodity price forecasting using pso-rbf neural network for farmers exchange rate improvement in Indonesia publication-title: Indones. J. Electr. Eng. Inform. – volume: 243 start-page: 60 year: 2015 ident: ref_49 article-title: Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system publication-title: Mech. Syst. Signal Process. – volume: 11 start-page: 153 year: 1990 ident: ref_41 article-title: A distance measure for classifying ARIMA models publication-title: J. Time Ser. Anal. doi: 10.1111/j.1467-9892.1990.tb00048.x – ident: ref_19 – ident: ref_21 doi: 10.1371/journal.pone.0270553 – volume: 149 start-page: 111009 year: 2023 ident: ref_2 article-title: Auction-based deep learning-driven smart agricultural supply chain mechanism publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.111009 – volume: 11 start-page: 22153 year: 2024 ident: ref_23 article-title: Path Planning of Autonomous Mobile Robot in Comprehensive Unknown Environment Using Deep Reinforcement Learning publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2024.3379361 – ident: ref_33 doi: 10.3390/math11020383  | 
    
| SSID | ssj0000913849 | 
    
| Score | 2.3122342 | 
    
| Snippet | Accurate prediction of agricultural product prices is instrumental in providing rational guidance for agricultural production planning and the development of... | 
    
| SourceID | doaj unpaywall proquest gale crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database  | 
    
| StartPage | 2308 | 
    
| SubjectTerms | Accuracy Agriculture Algorithms ARIMA Autoregressive models Back propagation Bézier curve Case studies Commodity futures Corn Curve fitting Curves Data smoothing Design Effectiveness Farm produce Forecasting Forecasts and trends Industrial development Localization LSTM Methods Neural networks Prediction models Predictions price forecast Prices Production planning Regression models Statistical analysis Support vector machines SVR Time series Trends  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB6V7QF6QPyKQEE-8HOKmjh2bCMhtLtqVSF2haCVerPGsQNIq2TZbkHljXgOXgxPNlmKkHqNrGg89sx8tme-AXguMAsGVZVGsOFSETFv6qQxqapDkKZErrtC2tm8PD4V787k2Q7Mh1oYSqscfGLnqH1b0R35QZGZGNq0KMTb5beUukbR6-rQQgP71gr-TUcxdgN2OTFjjWB3cjj_8HF760IsmFqYTQZ8Ec_7BxEXfiGGhQjF9T-xqaPw_99R78HNi2aJlz9wsbgSiY7uwO0eQrLxZs3vwk5o7sHebMu_en4fzJjN2-9hwSa_f_2MgY-9_3QyY9T3bPGajdk0hi5GGYSX7GvDpu2qYQM5yQM4PTo8mR6nfZOEtCrKYp1yqY2rUGeyypwoa4wTl7UOlL6pkKs8L30wPA8yQ184gViWkldl7ejNRfniIYyatgmPgGFEO7zytfAqE3EYylyFPGRlwAyd4gm8GNRjlxsuDBvPEKRGe1WNCUxId9sxxGDdfWhXn21vEJYrHyKYiH5ac1EEjHJRza6XQaJS6BJ4RZq3ZGfrFVbYlwtEUYmxyo41MeMQOX4C-8Pi2N4Az-3f7ZLAy-2CXSv24-v_8wRu8QhoNsl_-zBary7C0whI1u5Zv8v-APAi3G0 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB6V7QF64B-xUJAPBU4pjuOfhFu6alUhdoVEVyona5w4KmKVrbbZVu0b8Ry8GONNslqoBFyTsTSa8Xg-yzPfAOxJ5D5DU0QENlwkCfNGTmVZZCrvVaZRpKtG2vFEH0_lx1N1ugV7fS_Mxvt9Qtfx9wTbzgIBAiHl9A5sa1rPB7A9nXzOv4a5cUKYyJBgW9N-a8lv2WZFyn_76N2Bu8v6HK-vcDbbyC1HD-Cw16otKfm-v2zcfnHzB2Hjv9R-CPc7cMnydjc8gi1fP4ad8ZqZ9eIJZDmbzC_9jB38_HFDKZF9-nIyZmEi2uwDy9mIkhoLtYXX7FvNRvNFzXrakqcwPTo8GR1H3fiEqEh00kRCpZkrMOWq4E7qCilLqSr1obDToDBxrEufidgrjmXiJKLWShS6cuE1xpTJMxjU89o_B4aEg0RRVrI0XJIYqtj42HPtkaMzYghvejPb85Ylw9LtIpjCbppiCAfBB2uZwG29-kC2s12oWGFKTzCDTvBUyMQj6RW6eUvlFRqDbgjvggdtiMBmgQV2jQSkauCysnkaOHMCbf4Qdnsn2y40L2zCM8JIqUzo99u14_-q9ov_FXwJ9wSBnrZAcBcGzWLpXxFoadzrbs_-AgmN5Ew priority: 102 providerName: Unpaywall  | 
    
| Title | A Novel Bézier LSTM Model: A Case Study in Corn Analysis | 
    
| URI | https://www.proquest.com/docview/3090918434 https://doi.org/10.3390/math12152308 https://doaj.org/article/27de4064678243eaaa65821d5e5a77ab  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 12 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: ABDBF dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: AMVHM dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: 8FG dateStart: 20130301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BOUAPFU8RKNEeeJysrve93JyooUIkqqCRymk1a68FUuRUaQoq_6i_gz_GrO1EQUhw4Wh7D6Nvdne-kWe-IeSlBBYdmDJDshEyiZw3C8q5zNQxKqeB27aRdjrTJ3P5_lyd74z6SjVhnTxwB9wRN1XEoIPn2XIpIgDo1NtZqajAGAjp9mXW7SRT7R3scmGl6yrdBeb1R8j_viQlBaTc9rcY1Er1_3kh75O7V80FXH-HxWIn4kzuk4OeKtKiM_EBuRWbh2R_utVZvXxEXEFny29xQUc_b35ggKMfPp1NaZpvtnhLCzrGEEVTpeA1_drQ8XLV0I0IyWMynxyfjU-yfhhCVgot1hlX1oUSLFMlC1LXgDFH1TamMk0D3OS5rqLjeVQMKhEk4qQVL3Ud0r8VU4knZK9ZNvEpoYCshpdVLSvDJC4DlZuYR6YjMAiGD8irDTz-otO88JgrJBj9LowDMkrYbdckper2BfrP9_7z__LfgLxJyPt0ntYrKKFvC0BTkzKVL2xSwEki-ANyuHGO7w_apRfMoa-tFPj59dZhfzX72f8w-zm5x5HedKWAh2RvvbqKL5CerMOQ3LaTd0NyZ3Q8O_04bPclPs1np8XnXw-q4lQ | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6N7WHsAfFTBAb4gcFTtMSx4xhpQm3Z1LG2QtBJe_MuiQNIVVLajqn8R_wTvPCPcU6TMoS0t71GVnQ6n_19tu--A3gpMLAaVeYT2Uh9QZzXT6XWviqslTpGntSFtMNR3D8V78_k2Qb8amthXFpluyfWG3VeZe6OfD8KNEFbIiLxdvrNd12j3Otq20IDm9YK-UEtMdYUdpzY5SUd4eYHx-9ovvc4Pzoc9_p-02XAz6I4WvhcJjrNMAlkFqQiLpA2c1kk1uU_KuQqDOPcah5aGWAepQIxjiXP4iJ1jxYqj-i_t2CLDNN0-NvqHo4-fFzf8jjVzUToVcZ9FOlgn3joF6foQNQ_-QcL65YB_wPDDmxflFNcXuJkcgX5ju7CnYayss4qxu7Bhi3vw85wrfc6fwC6w0bVdzth3d8_fxDQssGn8ZC5PmuTN6zDegSVzGUsLtnXkvWqWclaMZSHcHoj7noEm2VV2sfAkNgVz_JC5CoQNAxlqGxog9higKniHuy17jHTlfaGoTOLc6O56kYPus536zFOMbv-UM0-m2YBGq5yS-SFcCHhIrJIdrka4VxaiUph6sFr53nj1vVihhk25QlkqlPIMp3EKfE4MX4PdtvJMc2Cn5u_4enBq_WEXWv2k-v_8wK2--PhwAyORydP4TYnMrVKPNyFzcXswj4jMrRInzcRx-D8poP8Dw7TGF4 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIgE9ID5FoIAPFE7RJo4dx0gIbbcsLe2ukGil3lwncWilVbLsbqmWf8Rf4MofYyYfSxFSb71almWNx37P9swbgFfCBk5blflINlJfIOf1U6m1rwrnpI4tT-pE2tE43j0Sn47l8Rr86nJhKKyyOxPrgzqvMnoj70WBRmhLRCR6RRsW8Xln-H76zacKUvTT2pXTaFxk3y0v8Po2f7e3g2u9xfnww-Fg128rDPhZFEcLn8tEp5lNApkFqYgLiwe5LBJHsY_KchWGce40D50MbB6lwto4ljyLi5Q-LFQe4bg34KYiFXfKUh9-XL3vkN5mInQTax9FOughAz0lLQck_ck_KFgXC_gfEjbg9nk5tcsLO5lcwrzhPbjbklXWb7zrPqy58gFsjFZKr_OHoPtsXH13E7b9--cPhFh28OVwxKjC2uQt67MBgiSjWMUlOyvZoJqVrJNBeQRH12Ksx7BeVqV7Aswir-JZXohcBQK7WRkqF7ogdjawqeIebHXmMdNGdcPgbYXMaC6b0YNtst2qD2ll1w3V7Ktpt57hKndIWxAREi4iZ3FelB2cSyetUjb14A1Z3tCOXsxsZtvEBJwqaWOZfkIaPCTD78Fmtzim3epz89cxPXi9WrArp_306nFewi10bXOwN95_Bnc4sqgm4nAT1hezc_ccWdAifVG7G4OT6_bvP1aAFfg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB6V7QF64B-xUJAPBU4pjuOfhFu6alUhdoVEVyona5w4KmKVrbbZVu0b8Ry8GONNslqoBFyTsTSa8Xg-yzPfAOxJ5D5DU0QENlwkCfNGTmVZZCrvVaZRpKtG2vFEH0_lx1N1ugV7fS_Mxvt9Qtfx9wTbzgIBAiHl9A5sa1rPB7A9nXzOv4a5cUKYyJBgW9N-a8lv2WZFyn_76N2Bu8v6HK-vcDbbyC1HD-Cw16otKfm-v2zcfnHzB2Hjv9R-CPc7cMnydjc8gi1fP4ad8ZqZ9eIJZDmbzC_9jB38_HFDKZF9-nIyZmEi2uwDy9mIkhoLtYXX7FvNRvNFzXrakqcwPTo8GR1H3fiEqEh00kRCpZkrMOWq4E7qCilLqSr1obDToDBxrEufidgrjmXiJKLWShS6cuE1xpTJMxjU89o_B4aEg0RRVrI0XJIYqtj42HPtkaMzYghvejPb85Ylw9LtIpjCbppiCAfBB2uZwG29-kC2s12oWGFKTzCDTvBUyMQj6RW6eUvlFRqDbgjvggdtiMBmgQV2jQSkauCysnkaOHMCbf4Qdnsn2y40L2zCM8JIqUzo99u14_-q9ov_FXwJ9wSBnrZAcBcGzWLpXxFoadzrbs_-AgmN5Ew | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+B%C3%A9zier+LSTM+Model%3A+A+Case+Study+in+Corn+Analysis&rft.jtitle=Mathematics+%28Basel%29&rft.au=Zhao%2C+Qingliang&rft.au=Chen%2C+Junji&rft.au=Feng%2C+Xiaobin&rft.au=Wang%2C+Yiduo&rft.date=2024-08-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=12&rft.issue=15&rft.spage=2308&rft_id=info:doi/10.3390%2Fmath12152308&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math12152308 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |