Causal Diagnosability Optimization Design for UAVs Based on Maximum Mean Covariance Difference and the Gray Wolf Optimization Algorithm
Given the growing complexity and variability of application scenarios, coupled with increasing operational demands, unmanned aerial vehicles (UAVs) are prone to faults. To enhance diagnosability and reliability in this context, this study proposes a causal diagnosability optimization strategy based...
Saved in:
| Published in | Mathematical and computational applications Vol. 30; no. 3; p. 55 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.06.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2297-8747 1300-686X 2297-8747 |
| DOI | 10.3390/mca30030055 |
Cover
| Summary: | Given the growing complexity and variability of application scenarios, coupled with increasing operational demands, unmanned aerial vehicles (UAVs) are prone to faults. To enhance diagnosability and reliability in this context, this study proposes a causal diagnosability optimization strategy based on the Maximum Mean and Covariance Discrepancy (MMCD) metric and the Grey Wolf Optimization (GWO) algorithm. First, a qualitative assessment method for causal diagnosability is introduced, leveraging structural analysis to evaluate the detectability and isolability of faults. Next, residuals are generated using Minimal Structurally Overdetermined (MSO) sets, and a quantitative diagnosability assessment framework is developed based on the MMCD metric. This framework measures the complexity of diagnosability through the analysis of residual deviations under fault conditions. Finally, a diagnosability optimization technique utilizing the GWO algorithm is proposed. This approach minimizes diagnostic system design costs while maximizing its performance. Simulation results for a UAV structural model demonstrate that the proposed strategy achieves a 100% fault detection rate and fault isolation rate while reducing design costs by 70.59%. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2297-8747 1300-686X 2297-8747 |
| DOI: | 10.3390/mca30030055 |