A computational algorithm for minimizing total variation in image restoration

A reliable and efficient computational algorithm for restoring blurred and noisy images is proposed. The restoration process is based on the minimal total variation principle introduced by Rudin et al. For discrete images, the proposed algorithm minimizes a piecewise linear l/sub 1/ function (a meas...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 5; no. 6; pp. 987 - 995
Main Authors Yuying Li, Santosa, F.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.1996
Subjects
Online AccessGet full text
ISSN1057-7149
DOI10.1109/83.503914

Cover

More Information
Summary:A reliable and efficient computational algorithm for restoring blurred and noisy images is proposed. The restoration process is based on the minimal total variation principle introduced by Rudin et al. For discrete images, the proposed algorithm minimizes a piecewise linear l/sub 1/ function (a measure of total variation) subject to a single 2-norm inequality constraint (a measure of data fit). The algorithm starts by finding a feasible point for the inequality constraint using a (partial) conjugate gradient method. This corresponds to a deblurring process. Noise and other artifacts are removed by a subsequent total variation minimization process. The use of the linear l/sub 1/ objective function for the total variation measurement leads to a simpler computational algorithm. Both the steepest descent and an affine scaling Newton method are considered to solve this constrained piecewise linear l/sub 1/ minimization problem. The resulting algorithm, when viewed as an image restoration and enhancement process, has the feature that it can be used in an adaptive/interactive manner in situations when knowledge of the noise variance is either unavailable or unreliable. Numerical examples are presented to demonstrate the effectiveness of the proposed iterative image restoration and enhancement process.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1057-7149
DOI:10.1109/83.503914