Comparative analysis of biophysical methods for monitoring protein proximity induction in the development of small molecule degraders

Targeted protein degradation relies on inducing proximity between an E3 ubiquitin ligase and a target protein, and subsequent proteasomal degradation of the latter. Biophysical methods allow the measurement of the ternary complex formation by recombinant target and E3 ligase proteins in the presence...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1867; no. 9; p. 130398
Main Authors Przytulski, Kamil, Glaza, Przemyslaw, Brach, Katarzyna, Sagan, Maria, Statkiewicz, Grzegorz, Klajn, Jan, Walczak, Michal J.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.09.2023
Subjects
Online AccessGet full text
ISSN0304-4165
1872-8006
1872-8006
DOI10.1016/j.bbagen.2023.130398

Cover

More Information
Summary:Targeted protein degradation relies on inducing proximity between an E3 ubiquitin ligase and a target protein, and subsequent proteasomal degradation of the latter. Biophysical methods allow the measurement of the ternary complex formation by recombinant target and E3 ligase proteins in the presence of molecular glues and bifunctional degraders. The development of new chemotypes of degraders mediating ternary complex formation of unknown dimensions and geometries requires the use of different biophysical approaches. The TR-FRET and AlphaLISA platforms have been applied to study molecular glues and bifunctional degraders. The performance of the label-based proximity assays was compared with the BLI method, which is a label-free, sensor-based approach. We present and compare two commonly used assays to monitor proximity induction, AlphaLISA and TR-FRET. The LinkScape system consisting of the CaptorBait peptide and the CaptorPrey protein is a novel method of protein labeling compatible with TR-FRET assay. The TR-FRET and AlphaLISA proximity assays enable detection of ternary complexes formed between an E3 Ligase, a target protein and a small molecule degrader. Experiments with different chemotypes of GSPT1 degraders showed that ALphaLISA was more susceptible to chemotype-dependent interference than TR-FRET assay. The discovery and optimization of small-molecule inducers of ternary complexes is greatly accelerated by using biophysical assays. The LinkScape-based TR-FRET assay is an alternative to antibody-based proximity assays due to the CaptorPrey's subnanomolar affinity to the CaptorBait-tagged protein target, and the 10-fold lower molecular weight of the CaptorPrey protein compared to the antibody. [Display omitted] •Biophysical proximity assays allow monitoring formation of ternary complex.•Protein labeling based on peptide tag derived from bacterial adhesin is described.•LinkScape-based TR-FRET enables detection of protein proximity induced by degraders.•AlphaLISA lacks information about exact stoichiometry between assay components.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0304-4165
1872-8006
1872-8006
DOI:10.1016/j.bbagen.2023.130398