Adsorption efficiency of chemically synthesized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) on crystal violet dye
Superparamagnetic Iron Oxide Nanoparticles (SPIONs) remains as a subject of extensive research in modern days due to their significant role in environmental remediation. The current study deals with SPIONs in removal of textile effluent dye, crystal violet. Three different types of SPIONs (SPIONs –...
Saved in:
Published in | Current research in green and sustainable chemistry Vol. 4; p. 100066 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2021
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2666-0865 2666-0865 |
DOI | 10.1016/j.crgsc.2021.100066 |
Cover
Summary: | Superparamagnetic Iron Oxide Nanoparticles (SPIONs) remains as a subject of extensive research in modern days due to their significant role in environmental remediation. The current study deals with SPIONs in removal of textile effluent dye, crystal violet. Three different types of SPIONs (SPIONs – a, b, c) were synthesized by chemical co-precipitation method having sodium hydroxide as reducing agent. The synthesized SPIONs were characterized by Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDX) and X-ray Diffraction (XRD). All the produced SPIONs were crystalline. Amongst them, the smallest and the best adsorbing SPIONs (SPIONs-a) against crystal violet dye was identified . SPIONs-a was found to possess super paramagnetism and of size below 50 nm. The adsorption efficiency by SPIONs-a were optimized for adsorbate-adsorbent concentration where it was found to be 8 g/L SPIONs-a, pH 9 and 2 h time of contact. It was subjected for mathematical models like Langmuir, Freundlich and Temkin isotherms studies which states the interaction of adsorbent and adsorbate. It was found to remove 94.7% CV and it was relevance with Temkin isotherms.
•Three different SPIONs were chemically synthesized by coprecipitation method and used for crystal violet removal.•Parameters like adsorbate-adsorbent concentration, pH and time of contact were optimized.•It was found that the adsorption happened in accordance with Temkin isotherm, where the SPIONs could remove 94.7 % of crystal violet. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2666-0865 2666-0865 |
DOI: | 10.1016/j.crgsc.2021.100066 |