Soft input decoder for high-rate generalised concatenated codes

Generalised concatenated (GC) codes are well suited for error correction in flash memories for high-reliability data storage. The GC codes are constructed from inner extended binary Bose–Chaudhuri–Hocquenghem (BCH) codes and outer Reed–Solomon codes. The extended BCH codes enable high-rate GC codes...

Full description

Saved in:
Bibliographic Details
Published inIET circuits, devices & systems Vol. 12; no. 4; pp. 432 - 438
Main Authors Spinner, Jens, Rohweder, Daniel, Freudenberger, Jürgen
Format Journal Article
LanguageEnglish
Published Stevenage The Institution of Engineering and Technology 01.07.2018
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1751-858X
1751-8598
1751-8598
DOI10.1049/iet-cds.2017.0347

Cover

More Information
Summary:Generalised concatenated (GC) codes are well suited for error correction in flash memories for high-reliability data storage. The GC codes are constructed from inner extended binary Bose–Chaudhuri–Hocquenghem (BCH) codes and outer Reed–Solomon codes. The extended BCH codes enable high-rate GC codes and low-complexity soft input decoding. This work proposes a decoder architecture for high-rate GC codes. For such codes, outer error and erasure decoding are mandatory. A pipelined decoder architecture is proposed that achieves a high data throughput with hard input decoding. In addition, a low-complexity soft input decoder is proposed. This soft decoding approach combines a bit-flipping strategy with algebraic decoding. The decoder components for the hard input decoding can be utilised which reduces the overhead for the soft input decoding. Nevertheless, the soft input decoding achieves a significant coding gain compared with hard input decoding.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1751-858X
1751-8598
1751-8598
DOI:10.1049/iet-cds.2017.0347