True energy-minimal and finite-size biplanar gradient coil design for MRI
Finite-sized high-performance planar magnetic field gradient coils in today's open configuration magnetic resonance imaging (MRI) systems have always been desirable for ever demanding imaging applications. The authors present a Lagrange multiplier technique for designing a minimum-energy gradie...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 17; no. 5; pp. 826 - 830 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.10.1998
|
Subjects | |
Online Access | Get full text |
ISSN | 0278-0062 |
DOI | 10.1109/42.736052 |
Cover
Summary: | Finite-sized high-performance planar magnetic field gradient coils in today's open configuration magnetic resonance imaging (MRI) systems have always been desirable for ever demanding imaging applications. The authors present a Lagrange multiplier technique for designing a minimum-energy gradient coil under a finite-size planar geometry constraint in addition to a set of magnetic field constraints. In this new design methodology, the surface current density on a finite size plane is represented by a two-dimensional (2-D) Fourier series expansion. Following the standard approach, the authors construct a functional F in terms of the stored magnetic energy and a set of field constraint points which are chosen over the desired imaging volume. Minimizing F, the authors obtain the continuous current density distribution for the finite-size planar gradient coil. Applying the stream function technique to the resulting continuous current distribution, the discrete current pattern can be generated. Employing the Biot-Savart law to the discrete current loops, the gradient magnetic field has been re-evaluated in order to validate the theory. Using this approach, the authors have been able to design a finite-size biplanar z-gradient coil which is capable of generating a gradient field of 40 mT /m @ 266 A. The excellent agreement between the analytical and numerical results has been achieved. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0278-0062 |
DOI: | 10.1109/42.736052 |