Fault Diagnosis of Rolling Bearings in Rail Train Based on Exponential Smoothing Predictive Segmentation and Improved Ensemble Learning Algorithm

The rolling bearing is a key component of the bogie of the rail train. The working environment is complex, and it is easy to cause cracks and other faults. Effective rolling bearing fault diagnosis can provide an important guarantee for the safe operation of the track while improving the resource ut...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 9; no. 15; p. 3143
Main Authors Han, Lu, Yu, Chongchong, Liu, Cuiling, Qin, Yong, Cui, Shijie
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2019
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app9153143

Cover

More Information
Summary:The rolling bearing is a key component of the bogie of the rail train. The working environment is complex, and it is easy to cause cracks and other faults. Effective rolling bearing fault diagnosis can provide an important guarantee for the safe operation of the track while improving the resource utilization of the rolling bearing and greatly reducing the cost of operation. Aiming at the problem that the characteristics of the vibration data of the rolling bearing components of the railway train and the vibration mechanism model are difficult to establish, a method for long-term faults diagnosis of the rolling bearing of rail trains based on Exponential Smoothing Predictive Segmentation and Improved Ensemble Learning Algorithm is proposed. Firstly, the sliding time window segmentation algorithm of exponential smoothing is used to segment the rolling bearing vibration data, and then the segmentation points are used to construct the localized features of the data. Finally, an Improved AdaBoost Algorithm (IAA) is proposed to enhance the anti-noise ability. IAA, Back Propagation (BP) neural network, Support Vector Machine (SVM), and AdaBoost are used to classify the same dataset, and the evaluation indexes show that the IAA has the best classification effect. The article selects the raw data of the bearing experiment platform provided by the State Key Laboratory of Rail Traffic Control and Safety of Beijing Jiaotong University and the standard dataset of the American Case Western Reserve University for the experiment. Theoretical analysis and experimental results show the effectiveness and practicability of the proposed method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2076-3417
2076-3417
DOI:10.3390/app9153143