A Power Transformer Fault Diagnosis Method Based on Improved Sand Cat Swarm Optimization Algorithm and Bidirectional Gated Recurrent Unit

The bidirectional gated recurrent unit (BiGRU) method based on dissolved gas analysis (DGA) has been studied in the field of power transformer fault diagnosis. However, there are still some shortcomings such as the fuzzy boundaries of DGA data, and the BiGRU parameters are difficult to determine. Th...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 12; no. 3; p. 672
Main Authors Lu, Wanjie, Shi, Chun, Fu, Hua, Xu, Yaosong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2023
Subjects
Online AccessGet full text
ISSN2079-9292
2079-9292
DOI10.3390/electronics12030672

Cover

More Information
Summary:The bidirectional gated recurrent unit (BiGRU) method based on dissolved gas analysis (DGA) has been studied in the field of power transformer fault diagnosis. However, there are still some shortcomings such as the fuzzy boundaries of DGA data, and the BiGRU parameters are difficult to determine. Therefore, this paper proposes a power transformer fault diagnosis method based on landmark isometric mapping (L-Isomap) and Improved Sand Cat Swarm Optimization (ISCSO) to optimize the BiGRU (ISCSO-BiGRU). Firstly, L-Isomap is used to extract features from DGA feature quantities. In addition, ISCSO is further proposed to optimize the BiGRU parameters to build an optimal diagnosis model based on BiGRU. For the ISCSO, four improvement methods are proposed. The traditional sand cat swarm algorithm is improved using logistic chaotic mapping, the water wave dynamic factor, adaptive weighting, and the golden sine strategy. Then, benchmarking functions are used to test the optimization performance of ISCSO and the four algorithms, and the results show that ISCSO has the best optimization accuracy and convergence speed. Finally, the fault diagnosis method based on L-Isomap and ISCSO-BiGRU is obtained. Using the model for fault diagnosis, the example simulation results show that using L-ISOMP to filter and downscale the model inputs can better improve model performance. The results are compared with the SCSO-BiGRU, WOA-BiGRU, GWO-BiGRU, and PSO-BiGRU fault diagnosis models. The results show that the fault diagnosis rate of ISCSO-BiGRU is 94.8%, which is 11.69%, 10.39%, 7.14%, and 5.9% higher than that of PSO-BiGRU, GWO-BiGRU, WOA-BiGRU, and SCSO-BiGRU, respectively, and validate that the proposed method can effectively improve the fault diagnosis performance of transformers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics12030672