Interdatacenter Job Routing and Scheduling With Variable Costs and Deadlines

To reduce their operational costs, datacenter (DC) operators can schedule large jobs at DCs in different geographical locations with time- and location-varying electricity and bandwidth prices. We introduce a framework and algorithms to do so that minimize electricity and bandwidth cost subject to j...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on smart grid Vol. 6; no. 6; pp. 2669 - 2680
Main Authors Joe-Wong, Carlee, Kamitsos, Ioannis, Sangtae Ha
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.11.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1949-3053
1949-3061
DOI10.1109/TSG.2015.2453398

Cover

More Information
Summary:To reduce their operational costs, datacenter (DC) operators can schedule large jobs at DCs in different geographical locations with time- and location-varying electricity and bandwidth prices. We introduce a framework and algorithms to do so that minimize electricity and bandwidth cost subject to job indivisibility, deadlines, priorities, and DC resource constraints. In doing so, we provide a way for DC operators to predict their operational costs for different DC placements and capacities, and thus make informed decisions about how to expand their DC network. Our distributed algorithm uses estimated job arrivals and day-ahead electricity prices to optimize over sliding time windows. We demonstrate its effectiveness on a Google DC trace and investigate the effects of different cost and performance criteria. The algorithm leverages heterogeneous job resource requirements and routing and scheduling flexibility: even deadline and indivisibility constraints yield little cost increase, though they significantly improve job completion times and localization at only one DC, respectively. We show that our algorithm reduces the cost much more than optimizing only electricity, only bandwidth, or a combination of resource costs and job completion times.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1949-3053
1949-3061
DOI:10.1109/TSG.2015.2453398