Composition and Basic Physical Properties of the Phobos Surface: A Comprehensive Review

The surface of Phobos is an intriguing subject of research for many scientists. This is associated, among other things, with the fact that it is perceived as a potential launch site for future human Mars exploration. Additionally, measurements conducted on its surface would not only deepen our knowl...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 14; no. 7; p. 3127
Main Authors Kolano, Malwina, Cała, Marek, Stopkowicz, Agnieszka
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2024
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app14073127

Cover

More Information
Summary:The surface of Phobos is an intriguing subject of research for many scientists. This is associated, among other things, with the fact that it is perceived as a potential launch site for future human Mars exploration. Additionally, measurements conducted on its surface would not only deepen our knowledge about Phobos but also provide insights into geochemical processes occurring on similar small bodies in the Solar System. Therefore, understanding the physical–mechanical properties of regolith is a crucial aspect of planetary exploration. These properties are key factors needed for both planning safe landings and establishing future bases on celestial bodies. In this paper, information is compiled regarding hypotheses about its origin, the probable composition of Phobos’ surface (spectral properties and HiRISE data), as well as its morphology. The article also presents the process of regolith formation covering Phobos’ surface and its presumed physical properties. It has been established that the estimated bulk density of Phobos, compared to the densities of other asteroids and meteorites, is most similar to C-type asteroids. It was also found that C-type asteroids, in terms of total porosity, best reflect Phobos. However, determining the surface composition of Phobos and its detailed physical properties requires additional information, which could be obtained through in situ studies or sample return missions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2076-3417
2076-3417
DOI:10.3390/app14073127