Compressed Machine Learning Models for the Uncertainty Quantification of Power Distribution Networks

Today’s spread of power distribution networks, with the installation of a significant number of renewable generators that depend on environmental conditions and on users’ consumption profiles, requires sophisticated models for monitoring the power flow, regulating the electricity market, and assessi...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 13; no. 18; p. 4881
Main Authors Memon, Zain Anwer, Trinchero, Riccardo, Manfredi, Paolo, Canavero, Flavio, Stievano, Igor S.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2020
Subjects
Online AccessGet full text
ISSN1996-1073
1996-1073
DOI10.3390/en13184881

Cover

More Information
Summary:Today’s spread of power distribution networks, with the installation of a significant number of renewable generators that depend on environmental conditions and on users’ consumption profiles, requires sophisticated models for monitoring the power flow, regulating the electricity market, and assessing the reliability of power grids. Such models cannot avoid taking into account the variability that is inherent to the electrical system and users’ behavior. In this paper, we present a solution for the generation of a compressed surrogate model of the electrical state of a realistic power network that is subject to a large number (on the order of a few hundreds) of uncertain parameters representing the power injected by distributed renewable sources or absorbed by users with different consumption profiles. Specifically, principal component analysis is combined with two state-of-the-art surrogate modeling strategies for uncertainty quantification, namely, the least-squares support vector machine, which is a nonparametric regression belonging to the class of machine learning methods, and the widely adopted polynomial chaos expansion. Such methods allow providing compact and efficient surrogate models capable of predicting the statistical behavior of all nodal voltages within the network as functions of its stochastic parameters. The IEEE 8500-node test feeder benchmark with 450 and 900 uncertain parameters is considered as a validation example in this study. The feasibility and strength of the proposed method are verified through a systematic assessment of its performance in terms of accuracy, efficiency, and convergence, based on reference simulations obtained via classical Monte Carlo analysis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1996-1073
1996-1073
DOI:10.3390/en13184881