A Privacy-Preserving Friend Matching Scheme Based on Attribute Encryption in Mobile Social Networks
In mobile social networks, users can easily communicate with others through smart devices. Therefore, the protection of user privacy in social networks is becoming a significant subject. To solve this problem, this paper proposes a fine-grained data access control scheme that uses attributes to matc...
Saved in:
Published in | Electronics (Basel) Vol. 13; no. 11; p. 2175 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2079-9292 2079-9292 |
DOI | 10.3390/electronics13112175 |
Cover
Summary: | In mobile social networks, users can easily communicate with others through smart devices. Therefore, the protection of user privacy in social networks is becoming a significant subject. To solve this problem, this paper proposes a fine-grained data access control scheme that uses attributes to match friends. In our scheme, the friend-making parties generate friend preference and self-description lists, respectively, realizing attribute hiding by converting friendship preference into ciphertext access control policies and self-description into attribute keys. The social platform matches user profiles to quickly eliminate unmatched users and avoids invalid decryption. In order to reduce the computational burden and communication cost of mobile devices, we adopt an algorithm mechanism for outsourcing decryption. When the user meets the matching conditions, the algorithm outsources the bilinear pair operation with large computation to the friend server. After that, the user finally decrypts the ciphertext. Security analysis shows that our scheme is safe and effective. In addition, performance evaluation shows that the proposed scheme is efficient and practical. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics13112175 |