Power Splitting-Based SWIPT With Decode-and-Forward Full-Duplex Relaying

This paper investigates simultaneous wireless information and power transfer (SWIPT) for a decode-and-forward (DF) full-duplex relay (FDR) network. A battery group consisting of two batteries is applied to utilize the relay-harvested energy for FDR transmission. The virtual harvest-use model and the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 15; no. 11; pp. 7561 - 7577
Main Authors Hongwu Liu, Kyeong Jin Kim, Kyung Sup Kwak, Poor, H. Vincent
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1536-1276
1558-2248
DOI10.1109/TWC.2016.2604801

Cover

More Information
Summary:This paper investigates simultaneous wireless information and power transfer (SWIPT) for a decode-and-forward (DF) full-duplex relay (FDR) network. A battery group consisting of two batteries is applied to utilize the relay-harvested energy for FDR transmission. The virtual harvest-use model and the harvest-use-store model are considered, respectively. By switching between two batteries for charging and discharging with the aid of power splitting (PS), concurrent source and relay transmissions can overcome spectral efficiency loss compared with half-duplex relay (HDR)-assisted PS-SWIPT. The outage probability for the virtual harvest-use model is presented in an exact integral form and the optimal PS (OPS) ratio that maximizes the end-to-end signal-to-interference-plus-noise ratio (e-SINR) is characterized in closed form via the cubic formula. The fundamental tradeoff between the e-SINR and recycled self-power is quantified. The OPS ratios and the corresponding outage probabilities in noise-limited and interference-limited environments are also derived. In the harvest-use-store model, a greedy switching (GS) policy is implemented with energy accumulation across transmission blocks. The OPS ratio of the GS policy is presented and the corresponding outage probability is derived by modeling the relay's energy levels as a Markov chain with a two-stage state transition. Numerical results verify the performance improvement of the proposed scheme over HDR-assisted PS-SWIPT in terms of outage probability and average throughput.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2016.2604801