EISPY2D: An Open-Source Python Library for the Development and Comparison of Algorithms in Two-Dimensional Electromagnetic Inverse Scattering Problems

Microwave Imaging is a key technique for reconstructing the electrical properties of inaccessible media, relying on algorithms to solve the associated Electromagnetic Inverse Scattering Problem. To support the assessment of recent developments in this field, this work introduces an open-source Pytho...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; pp. 92134 - 92154
Main Authors Costa Batista, Andre, Adriano, Ricardo, Batista, Lucas S.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2025.3573679

Cover

More Information
Summary:Microwave Imaging is a key technique for reconstructing the electrical properties of inaccessible media, relying on algorithms to solve the associated Electromagnetic Inverse Scattering Problem. To support the assessment of recent developments in this field, this work introduces an open-source Python library that provides a modular and standardized framework for implementing and evaluating microwave imaging algorithms. The library facilitates the development and comparison of new methods through a structured class system, offering features such as test randomization, performance metrics, and statistical analysis. To the authors' knowledge, this is the first tool designed specifically for benchmarking and comparative studies in microwave imaging algorithms. The paper presents the library's design principles, along with case studies demonstrating its functionality. The code is freely available on GitHub: https://andre-batista.github.io/eispy2d/ .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2025.3573679