A Time-Delay-Bounded Data Scheduling Algorithm for Delay Reduction in Distributed Networked Control Systems
As a key feature of networked control systems (NCSs), the time delays induced by communication medium sharing and data exchange over the system components could largely degrade the NCS performances or may even cause system instability, and thus, it is of critical importance to reduce time delays wit...
Saved in:
| Published in | Mathematical problems in engineering Vol. 2020; no. 2020; pp. 1 - 12 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cairo, Egypt
Hindawi Publishing Corporation
2020
Hindawi John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1024-123X 1026-7077 1563-5147 1563-5147 |
| DOI | 10.1155/2020/8290879 |
Cover
| Summary: | As a key feature of networked control systems (NCSs), the time delays induced by communication medium sharing and data exchange over the system components could largely degrade the NCS performances or may even cause system instability, and thus, it is of critical importance to reduce time delays within NCSs. This paper studies the time-delay reduction problem in distributed NCSs and presents a dual-way data scheduling mechanism for time-delay reductions in delay-bounded NCSs with time-varying delays. We assess the time delays and their influences on the NCSs first with various delay factors being considered and then describe a one-way scheduling mechanism for network-delay reductions in NCSs. Based upon such a method, a dual-way scheduling algorithm is finally proposed for distributed NCSs with different types of transmitted data packets. Experiments are conducted on a remote teaching platform to verify the effectiveness of the proposed dual-way scheduling mechanism. Results demonstrate that, with the stability time-delay bound considered within the scheduling process, the proposed mechanism is effective for NCS time-delay reductions while addressing the stability, control accuracy, and settling time issues efficiently. Such a proposed mechanism could also be implemented together with some other existing control algorithms for time-delay reductions in NCSs. Our work could provide both useful theoretical guidance and application references for stable tracking control of delay-bounded NCSs. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1024-123X 1026-7077 1563-5147 1563-5147 |
| DOI: | 10.1155/2020/8290879 |