A New Type of Countermeasure against DPA in Multi-Sbox of Block Cipher

The Internet of Things (IoT) provides the network for physical devices, like home appliances, embedded with electronics, sensors, and software, to share and exchange data. With its fast development, security of IoT has become a crucial problem. Among the methods of attack, side-channel attack has pr...

Full description

Saved in:
Bibliographic Details
Published inWireless communications and mobile computing Vol. 2018; no. 2018; pp. 1 - 11
Main Authors Zhang, ShuaiWei, Zhong, Weidong
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2018
Hindawi
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1530-8669
1530-8677
1530-8677
DOI10.1155/2018/5945312

Cover

More Information
Summary:The Internet of Things (IoT) provides the network for physical devices, like home appliances, embedded with electronics, sensors, and software, to share and exchange data. With its fast development, security of IoT has become a crucial problem. Among the methods of attack, side-channel attack has proven to be an effective tool to compromise the security of different devices with improving techniques of data processing, like DPA and CPA. Meanwhile, many countermeasures have risen accordingly as well, such as masking and noise addition. However, their common deficiency was that every single countermeasure might not be able to protect the key information completely after statistical analysis. Sensitive information will be disclosed during differential power analysis of Sbox, since it is the only nonlinear component in block cipher. Thus, how to protect Sbox effectively was the highlight of researches. Based on Sbox-reuse concept proposed by Bilgin, this paper put forward a new type of a countermeasure scheme against DPA in multi-Sbox of block cipher. We first converted the multi-Sbox into 4 × 4 permutations and then reused permutation with the algebraic degree of more than one so as to turn it into a special reusable Sbox and then numbered 4 × 4 permutation input. Finally, we made these inputs of permutations completely random by masking. Since it was necessary to make the collected power consumption curve subject to alignment process in DPA by chosen-plaintext attack, this scheme combined the concept from DPA countermeasures of masking and noise addition. After the experiment with the proposed implementation, successful prevention of the attacker from accurately aligning the power consumption curve of the target Sbox has been proven, and the level of security has been improved by adding more random noise to protect key information and decrease the accuracy of statistical analysis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1530-8669
1530-8677
1530-8677
DOI:10.1155/2018/5945312