Multiobjective Optimization of Carbon Fiber-Reinforced Plastic Composite Bumper Based on Adaptive Genetic Algorithm

Genetic algorithm (GA) is a common optimization technique that has two fatal limitations: low convergence speed and premature convergence to the local optimum. As an effective method to solve these drawbacks, an adaptive genetic algorithm (AGA) considering adaptive crossover and mutation operators i...

Full description

Saved in:
Bibliographic Details
Published inMathematical problems in engineering Vol. 2019; no. 2019; pp. 1 - 12
Main Authors Cao, Liqin, Shi, Gui-jie, Liang, Haotian, Gao, Da-wei
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2019
Hindawi
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1024-123X
1026-7077
1563-5147
1563-5147
DOI10.1155/2019/8948315

Cover

More Information
Summary:Genetic algorithm (GA) is a common optimization technique that has two fatal limitations: low convergence speed and premature convergence to the local optimum. As an effective method to solve these drawbacks, an adaptive genetic algorithm (AGA) considering adaptive crossover and mutation operators is proposed in this paper. Verified by two test functions, AGA shows higher convergence speed and stronger ability to search the global optimal solutions than GA. To meet the crashworthiness and lightweight demands of automotive bumper design, CFRP material is employed in the bumper beam instead of traditional aluminum. Then, a multiobjective optimization procedure incorporating AGA and the Kriging surrogate model is developed to find the optimal stacking angle sequence of CFRP. Compared with the conventional aluminum bumper, the optimized CFRP bumper exhibits better crashworthiness and achieves 43.19% weight reduction.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1024-123X
1026-7077
1563-5147
1563-5147
DOI:10.1155/2019/8948315