A Linear Active Disturbance Rejection Control Approach to Position Synchronization Control for Networked Interconnected Motion System

This article investigates the position synchronization control problem for networked interconnected motion systems (NIMSs). First, a position synchronization error model is established for the interconnected motion system, and the delay-induced uncertainty; the adjacent coupling between subsystems a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on control of network systems Vol. 7; no. 4; pp. 1746 - 1756
Main Authors Wang, Yao-Wei, Zhang, Wen-An, Yu, Li
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2325-5870
2372-2533
DOI10.1109/TCNS.2020.2999305

Cover

More Information
Summary:This article investigates the position synchronization control problem for networked interconnected motion systems (NIMSs). First, a position synchronization error model is established for the interconnected motion system, and the delay-induced uncertainty; the adjacent coupling between subsystems and the external disturbances is lumped together as a total disturbance in the system model. Next, the linear extended state observer (LESO) is designed to estimate the total disturbance and the system state simultaneously. Then, a LESO-based synchronization controller is designed to achieve both position synchronization and disturbance rejection. The effect of the network-induced delay in the synchronization performance is significantly reduced. Finally, experiments on a position synchronization control platform of an interconnected four-motor system are presented to demonstrate the effectiveness and superiority of the proposed method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2325-5870
2372-2533
DOI:10.1109/TCNS.2020.2999305