Applications of Differential Privacy in Social Network Analysis: A Survey
Differential privacy provides strong privacy preservation guarantee in information sharing. As social network analysis has been enjoying many applications, it opens a new arena for applications of differential privacy. This article presents a comprehensive survey connecting the basic principles of d...
Saved in:
Published in | IEEE transactions on knowledge and data engineering Vol. 35; no. 1; pp. 108 - 127 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1041-4347 1558-2191 |
DOI | 10.1109/TKDE.2021.3073062 |
Cover
Summary: | Differential privacy provides strong privacy preservation guarantee in information sharing. As social network analysis has been enjoying many applications, it opens a new arena for applications of differential privacy. This article presents a comprehensive survey connecting the basic principles of differential privacy and applications in social network analysis. We concisely review the foundations of differential privacy and the major variants. Then, we discuss how differential privacy is applied to social network analysis, including privacy attacks in social networks, models of differential privacy in social network analysis, and a series of popular tasks, such as analyzing degree distribution, counting subgraphs and assigning weights to edges. We also discuss a series of challenges for future work. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1041-4347 1558-2191 |
DOI: | 10.1109/TKDE.2021.3073062 |