Design and Experimental Evaluation of Equalization Algorithms for Line-of-Sight Spatial Multiplexing at 60 GHz

With large bandwidths, millimeter wave (mmWave) line-of-sight (LoS) multi-input multi-output (MIMO) technology employing parallel stream transmission is well suited for future wireless backhaul systems. However, hardware imperfections of mmWave transceivers cause additional signal processing challen...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal on selected areas in communications Vol. 36; no. 11; pp. 2570 - 2580
Main Authors Song, Xiaohang, Halsig, Tim, Cvetkovski, Darko, Rave, Wolfgang, Lankl, Berthold, Grass, Eckhard, Fettweis, Gerhard
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0733-8716
1558-0008
DOI10.1109/JSAC.2018.2872286

Cover

More Information
Summary:With large bandwidths, millimeter wave (mmWave) line-of-sight (LoS) multi-input multi-output (MIMO) technology employing parallel stream transmission is well suited for future wireless backhaul systems. However, hardware imperfections of mmWave transceivers cause additional signal processing challenges. Considering the channel and hardware properties, this paper proposes a novel frame structure with high temporal efficiency. The required MIMO processing can be decomposed into two steps. The first one removes the interantenna interference including the carrier frequency offsets. In the second step, the intersymbol interference brought by the frequency-selective components is canceled with a parallel structure. As a comparison, a more general decision-directed least-mean-square approach (DD-LMS) for joint processing of all effects is introduced. With a 60 GHz <inline-formula> <tex-math notation="LaTeX">2 \times 2 </tex-math></inline-formula> LoS MIMO demonstrator, only the widely linear version of DD-LMS achieves performance of about 0.2-0.6 dB better than the proposed method but requires approximately four times more complexity. The proposed method with parallel processing chains is well suited especially for larger LoS MIMO systems, e.g., for a system with 16 streams, its required complexity is less than 7% of the widely linear DD-LMS.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0733-8716
1558-0008
DOI:10.1109/JSAC.2018.2872286