Coordinate-based fast lightweight path search algorithm for electromagnetic navigation bronchoscopy

Electromagnetic navigation bronchoscopy (ENB) uses electromagnetic positioning technology to guide the bronchoscope to accurately and quickly reach the lesion along the planned path. However, enormous data in high-resolution lung computed tomography (CT) and the complex structure of multilevel branc...

Full description

Saved in:
Bibliographic Details
Published inMedical & biological engineering & computing Vol. 61; no. 3; pp. 699 - 708
Main Authors Wu, Wenbin, Xia, Wei, Jun, Zhong, Saghatchi, Samaneh, Lavasani, Saeedeh Navaei, Mohagheghi, Saeed, Ahmadian, Alireza, Gao, Xin
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0140-0118
1741-0444
1741-0444
DOI10.1007/s11517-022-02740-8

Cover

More Information
Summary:Electromagnetic navigation bronchoscopy (ENB) uses electromagnetic positioning technology to guide the bronchoscope to accurately and quickly reach the lesion along the planned path. However, enormous data in high-resolution lung computed tomography (CT) and the complex structure of multilevel branching bronchial tree make fast path search challenging for path planning. We propose a coordinate-based fast lightweight path search (CPS) algorithm for ENB. First, the centerline is extracted from the bronchial tree by applying topological thinning. Then, Euclidean-distance-based coordinate search is applied. The centerline points are represented by their coordinates, and adjacent points along the navigation path are selected considering the shortest Euclidean distance to the target on the centerline nearest the lesion. From the top of the trachea centerline, search is repeated until reaching the target. In 50 high-resolution lung CT images acquired from five scanners, the CPS algorithm achieves accuracy, average search time, and average memory consumption of 100%, 88.5 ms, and 166.0 MB, respectively, reducing search time by 74.3% and 73.1% and memory consumption by 83.3% and 83.0% compared with Dijkstra and A* algorithms, respectively. CPS algorithm is suitable for path search in multilevel branching bronchial tree navigation based on high-resolution lung CT images. Graphical Abstract
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0140-0118
1741-0444
1741-0444
DOI:10.1007/s11517-022-02740-8