Calibration of pulse transit time through a cable for EAS experiments
In ground-based extensive air shower expemments, the chrection and energy are reconstructecl Dy mea- suring the relative arrival time of secondary particles, and the energy they deposit. The measurement precision of the arrival time is crucial for determination of the angular resolution. For this pu...
Saved in:
Published in | Chinese physics C Vol. 38; no. 6; pp. 55 - 59 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.06.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1137 0254-3052 |
DOI | 10.1088/1674-1137/38/6/066202 |
Cover
Summary: | In ground-based extensive air shower expemments, the chrection and energy are reconstructecl Dy mea- suring the relative arrival time of secondary particles, and the energy they deposit. The measurement precision of the arrival time is crucial for determination of the angular resolution. For this purpose, we need to obtain a precise relative time offset for each detector and to apply the calibration process. The time offset is associated with the pho- tomultiplier tube, cable, relevant electronic circuits, etc. In view of the transit time through long cables being heavily dependent on the ambient temperature, a real-time calibration method for the cable transit time is investigated in this paper. Even with a poor-resolution time-to-digital converter, this method can achieve high precision. This has been successfully demonstrated with the Front-End-Electronic board used in the Daya Bay neutrino experiment. |
---|---|
Bibliography: | 11-5641/O4 QIAN Xiang-Li,CHANG Jin-Fan,FENG Cun-Feng,FENG Zhao-Yang,GOU Quan-Bu,GUO Yi-Qing,HU Hong-Bo,LIU Cheng,WANG Zheng,XUE Liang,ZHANG Xue-Yao, ZHANG Yi(1 Shandong University, Jinan 250100, China;2 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China) EAS experiment, time-walk effect, real-time calibration, transit time In ground-based extensive air shower expemments, the chrection and energy are reconstructecl Dy mea- suring the relative arrival time of secondary particles, and the energy they deposit. The measurement precision of the arrival time is crucial for determination of the angular resolution. For this purpose, we need to obtain a precise relative time offset for each detector and to apply the calibration process. The time offset is associated with the pho- tomultiplier tube, cable, relevant electronic circuits, etc. In view of the transit time through long cables being heavily dependent on the ambient temperature, a real-time calibration method for the cable transit time is investigated in this paper. Even with a poor-resolution time-to-digital converter, this method can achieve high precision. This has been successfully demonstrated with the Front-End-Electronic board used in the Daya Bay neutrino experiment. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1137 0254-3052 |
DOI: | 10.1088/1674-1137/38/6/066202 |