Learning-Based Context-Aware Resource Allocation for Edge-Computing-Empowered Industrial IoT

Edge computing provides a promising paradigm to support the implementation of Industrial Internet of Things (IIoT) by offloading computational-intensive tasks from resource-limited machine-type devices (MTDs) to powerful edge servers. However, the performance gain of edge computing may be severely c...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 7; no. 5; pp. 4260 - 4277
Main Authors Liao, Haijun, Zhou, Zhenyu, Zhao, Xiongwen, Zhang, Lei, Mumtaz, Shahid, Jolfaei, Alireza, Ahmed, Syed Hassan, Bashir, Ali Kashif
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.05.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2327-4662
2327-4662
DOI10.1109/JIOT.2019.2963371

Cover

Abstract Edge computing provides a promising paradigm to support the implementation of Industrial Internet of Things (IIoT) by offloading computational-intensive tasks from resource-limited machine-type devices (MTDs) to powerful edge servers. However, the performance gain of edge computing may be severely compromised due to limited spectrum resources, capacity-constrained batteries, and context unawareness. In this article, we consider the optimization of channel selection that is critical for efficient and reliable task delivery. We aim at maximizing the long-term throughput subject to long-term constraints of energy budget and service reliability. We propose a learning-based channel selection framework with service reliability awareness, energy awareness, backlog awareness, and conflict awareness, by leveraging the combined power of machine learning, Lyapunov optimization, and matching theory. We provide rigorous theoretical analysis, and prove that the proposed framework can achieve guaranteed performance with a bounded deviation from the optimal performance with global state information (GSI) based on only local and causal information. Finally, simulations are conducted under both single-MTD and multi-MTD scenarios to verify the effectiveness and reliability of the proposed framework.
AbstractList Edge computing provides a promising paradigm to support the implementation of Industrial Internet of Things (IIoT) by offloading computational-intensive tasks from resource-limited machine-type devices (MTDs) to powerful edge servers. However, the performance gain of edge computing may be severely compromised due to limited spectrum resources, capacity-constrained batteries, and context unawareness. In this article, we consider the optimization of channel selection that is critical for efficient and reliable task delivery. We aim at maximizing the long-term throughput subject to long-term constraints of energy budget and service reliability. We propose a learning-based channel selection framework with service reliability awareness, energy awareness, backlog awareness, and conflict awareness, by leveraging the combined power of machine learning, Lyapunov optimization, and matching theory. We provide rigorous theoretical analysis, and prove that the proposed framework can achieve guaranteed performance with a bounded deviation from the optimal performance with global state information (GSI) based on only local and causal information. Finally, simulations are conducted under both single-MTD and multi-MTD scenarios to verify the effectiveness and reliability of the proposed framework.
Author Ahmed, Syed Hassan
Zhao, Xiongwen
Mumtaz, Shahid
Liao, Haijun
Zhou, Zhenyu
Bashir, Ali Kashif
Jolfaei, Alireza
Zhang, Lei
Author_xml – sequence: 1
  givenname: Haijun
  surname: Liao
  fullname: Liao, Haijun
  email: haijun_liao@ncepu.edu.cn
  organization: State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources and the School of Electrical and Electronic Engineering, North China Electric Power University, Beijing, China
– sequence: 2
  givenname: Zhenyu
  orcidid: 0000-0002-3344-4463
  surname: Zhou
  fullname: Zhou, Zhenyu
  email: zhenyu_zhou@ncepu.edu.cn
  organization: State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources and the School of Electrical and Electronic Engineering, North China Electric Power University, Beijing, China
– sequence: 3
  givenname: Xiongwen
  orcidid: 0000-0001-9421-4795
  surname: Zhao
  fullname: Zhao, Xiongwen
  email: zhaoxw@ncepu.edu.cn
  organization: State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources and the School of Electrical and Electronic Engineering, North China Electric Power University, Beijing, China
– sequence: 4
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
  email: 18660130685@163.com
  organization: State Grid Corporation of China, Shandong Electric Power Research Institute, Jinan, China
– sequence: 5
  givenname: Shahid
  orcidid: 0000-0001-6364-6149
  surname: Mumtaz
  fullname: Mumtaz, Shahid
  email: smumtaz@av.it.pt
  organization: Instituto de Telecomunicações, Aveiro, Portugal
– sequence: 6
  givenname: Alireza
  orcidid: 0000-0001-7818-459X
  surname: Jolfaei
  fullname: Jolfaei, Alireza
  email: alireza.jolfaei@mq.edu.au
  organization: Department of Computing, Macquarie University, Sydney, NSW, Australia
– sequence: 7
  givenname: Syed Hassan
  orcidid: 0000-0002-1381-5095
  surname: Ahmed
  fullname: Ahmed, Syed Hassan
  email: sh.ahmed@ieee.org
  organization: Department of Electrical and Computer Science, Georgia Southern University, Statesboro, GA, USA
– sequence: 8
  givenname: Ali Kashif
  orcidid: 0000-0003-2601-9327
  surname: Bashir
  fullname: Bashir, Ali Kashif
  email: dr.alikashif.b@ieee.org
  organization: Department of Computing and Mathematics, Manchester Metropolitan University, Manchester, U.K
BookMark eNp9kE1Lw0AQhhepYK39AeIl4Dl1v5M91lA1UihIvQlhm0xKSpqNuxuq_97EFhEPnmYY3mdmeC7RqDENIHRN8IwQrO6e09V6RjFRM6okYxE5Q2PKaBRyKenoV3-Bps7tMMY9JoiSY_S2BG2bqtmG99pBESSm8fDhw_lBWwhewJnO5hDM69rk2lemCUpjg0WxhTAx-7bzA7rYt-YAtsfTpuict5Wug9Ssr9B5qWsH01OdoNeHxTp5CperxzSZL8OcCeVDqkvBilwwzTaMgCixKjjbFDKiXPANjiVQSQsdlZLJUlMRCxnlUT-OWcQlsAm6Pe5trXnvwPls17_d9CczyjHlKuZY9ClyTOXWOGehzFpb7bX9zAjOBo_Z4DEbPGYnjz0T_WHyyn978FZX9b_kzZGsAODnUqy4FCJmX8OfgV8
CODEN IITJAU
CitedBy_id crossref_primary_10_1016_j_eng_2021_08_022
crossref_primary_10_1109_TCOMM_2023_3274165
crossref_primary_10_1109_ACCESS_2020_2979491
crossref_primary_10_1155_2022_5051496
crossref_primary_10_1016_j_seta_2021_101473
crossref_primary_10_1109_TII_2021_3137349
crossref_primary_10_1007_s00530_020_00704_2
crossref_primary_10_1002_dac_4925
crossref_primary_10_1016_j_comnet_2022_108957
crossref_primary_10_1016_j_adhoc_2021_102553
crossref_primary_10_1016_j_phycom_2022_101949
crossref_primary_10_1177_15501329221097815
crossref_primary_10_1016_j_swevo_2025_101878
crossref_primary_10_32604_cmes_2023_045277
crossref_primary_10_1109_TAES_2023_3251967
crossref_primary_10_1109_ACCESS_2021_3050841
crossref_primary_10_1109_TCSS_2021_3129259
crossref_primary_10_1002_dac_5724
crossref_primary_10_1007_s13748_021_00274_y
crossref_primary_10_1016_j_comnet_2022_109536
crossref_primary_10_1109_ACCESS_2020_3038249
crossref_primary_10_1109_TII_2020_3006885
crossref_primary_10_1109_JIOT_2024_3381183
crossref_primary_10_1109_TGCN_2022_3216882
crossref_primary_10_1109_ACCESS_2020_3026711
crossref_primary_10_3233_THC_213000
crossref_primary_10_1109_ACCESS_2020_3011904
crossref_primary_10_3233_THC_213001
crossref_primary_10_1080_10447318_2022_2122111
crossref_primary_10_1109_ACCESS_2020_3011503
crossref_primary_10_1109_TVT_2020_3022766
crossref_primary_10_1587_transfun_2023EAP1094
crossref_primary_10_1007_s13369_021_05913_z
crossref_primary_10_1109_JIOT_2022_3142185
crossref_primary_10_1109_LCOMM_2021_3122129
crossref_primary_10_1109_ACCESS_2020_3033421
crossref_primary_10_1109_TGCN_2022_3187463
crossref_primary_10_3390_e25121640
crossref_primary_10_1007_s40031_023_00928_6
crossref_primary_10_1016_j_comnet_2023_109666
crossref_primary_10_1109_JIOT_2020_3020951
crossref_primary_10_1109_TCCN_2020_3006268
crossref_primary_10_1016_j_apenergy_2023_122284
crossref_primary_10_1109_TVT_2020_2986088
crossref_primary_10_1109_ACCESS_2021_3051557
crossref_primary_10_1109_JSEN_2020_2981558
crossref_primary_10_3233_THC_213011
crossref_primary_10_1109_ACCESS_2020_2974293
crossref_primary_10_3390_s20154158
crossref_primary_10_1109_TCOMM_2024_3412773
crossref_primary_10_1109_TVT_2020_2986769
crossref_primary_10_1007_s10462_024_10947_4
crossref_primary_10_1007_s10586_022_03605_3
crossref_primary_10_1002_dac_5628
crossref_primary_10_1109_ACCESS_2020_3015289
crossref_primary_10_1016_j_future_2023_07_035
crossref_primary_10_1109_ACCESS_2021_3100316
crossref_primary_10_1109_JIOT_2020_3040657
crossref_primary_10_3390_app14167104
crossref_primary_10_1109_TITS_2021_3116421
crossref_primary_10_3390_su151310150
crossref_primary_10_3390_s21165261
crossref_primary_10_1109_LCOMM_2020_3004523
crossref_primary_10_1109_TGCN_2021_3081616
crossref_primary_10_3934_era_2023035
crossref_primary_10_1109_ACCESS_2021_3050238
crossref_primary_10_1109_LWC_2020_3044335
crossref_primary_10_1109_ACCESS_2020_3001572
crossref_primary_10_1109_TII_2021_3128506
crossref_primary_10_1002_ett_4647
crossref_primary_10_1016_j_heliyon_2022_e10044
crossref_primary_10_1109_ACCESS_2021_3074145
crossref_primary_10_3390_s21237902
crossref_primary_10_1109_TWC_2020_3010701
crossref_primary_10_1109_ACCESS_2020_3046041
crossref_primary_10_1109_JIOT_2020_3030856
crossref_primary_10_1145_3514238
crossref_primary_10_1109_TMC_2023_3329170
crossref_primary_10_1109_ACCESS_2020_2981130
crossref_primary_10_1109_COMST_2021_3106401
crossref_primary_10_1109_ACCESS_2020_3011496
crossref_primary_10_4018_IJABIM_287589
crossref_primary_10_1109_TNSM_2023_3332509
crossref_primary_10_4018_IJMCMC_306976
crossref_primary_10_4018_IJMCMC_346990
crossref_primary_10_1109_ACCESS_2020_3023479
crossref_primary_10_1109_JIOT_2021_3063846
crossref_primary_10_1016_j_compeleceng_2021_107537
crossref_primary_10_1109_JIOT_2020_3026355
crossref_primary_10_1109_ACCESS_2021_3069137
crossref_primary_10_1016_j_adhoc_2023_103322
crossref_primary_10_1109_JSAC_2020_3020680
crossref_primary_10_1007_s11277_021_08121_y
crossref_primary_10_1007_s13369_021_05876_1
crossref_primary_10_1016_j_lmot_2023_101938
crossref_primary_10_1109_TCE_2023_3344514
crossref_primary_10_1109_TITS_2021_3052979
crossref_primary_10_1088_1742_6596_2378_1_012097
crossref_primary_10_1109_TITS_2022_3172668
crossref_primary_10_1109_TVT_2023_3235520
crossref_primary_10_1109_ACCESS_2020_2982293
crossref_primary_10_1016_j_avb_2021_101629
crossref_primary_10_1002_ett_4151
crossref_primary_10_1007_s13369_021_05902_2
crossref_primary_10_1109_TITS_2021_3118701
crossref_primary_10_1016_j_aej_2021_11_029
crossref_primary_10_1007_s11036_023_02212_9
crossref_primary_10_1109_TVT_2022_3189019
crossref_primary_10_1016_j_seta_2021_101201
crossref_primary_10_1109_TCCN_2021_3101239
crossref_primary_10_1109_TII_2024_3424347
crossref_primary_10_1142_S0218488522400153
crossref_primary_10_1109_TII_2020_3024611
crossref_primary_10_1016_j_suscom_2020_100463
crossref_primary_10_1080_21642583_2024_2342815
crossref_primary_10_1109_ACCESS_2021_3051505
crossref_primary_10_1007_s00521_024_09723_w
crossref_primary_10_1109_JIOT_2021_3110910
crossref_primary_10_1088_1742_6596_2584_1_012132
crossref_primary_10_1155_2022_9891117
crossref_primary_10_32604_csse_2023_030538
crossref_primary_10_1007_s11277_021_09323_0
crossref_primary_10_1109_ACCESS_2020_3032469
crossref_primary_10_1109_JIOT_2022_3181990
crossref_primary_10_1109_TII_2022_3186039
crossref_primary_10_1109_TGCN_2021_3063224
crossref_primary_10_1016_j_chaos_2022_112584
crossref_primary_10_1109_JSAC_2023_3310101
crossref_primary_10_1109_JIOT_2023_3268375
crossref_primary_10_1109_TITS_2021_3135197
crossref_primary_10_1111_exsy_12820
crossref_primary_10_1109_TII_2020_3041159
crossref_primary_10_32604_cmc_2021_015369
crossref_primary_10_1080_01969722_2022_2080341
crossref_primary_10_1186_s13677_024_00680_2
crossref_primary_10_1016_j_jmsy_2022_01_010
crossref_primary_10_1016_j_jclepro_2021_129230
crossref_primary_10_1109_TNSE_2020_2991106
crossref_primary_10_1016_j_compeleceng_2022_107950
crossref_primary_10_1142_S0218126624501974
crossref_primary_10_1109_JIOT_2021_3102950
crossref_primary_10_1109_TCE_2024_3478794
crossref_primary_10_3390_pr9112084
crossref_primary_10_1109_TGCN_2021_3076582
crossref_primary_10_1155_2022_6772467
crossref_primary_10_1109_OJCS_2020_3006205
crossref_primary_10_1587_transfun_2024EAP1062
crossref_primary_10_1109_MWC_001_2100102
crossref_primary_10_1109_ACCESS_2024_3349587
crossref_primary_10_1016_j_future_2021_07_036
crossref_primary_10_1109_JIOT_2021_3052082
crossref_primary_10_1109_TII_2022_3141435
crossref_primary_10_1038_s41598_024_71506_z
crossref_primary_10_1016_j_aej_2023_11_045
crossref_primary_10_1049_cmu2_12442
crossref_primary_10_1109_TNSE_2024_3503996
crossref_primary_10_1109_TVT_2020_2981959
crossref_primary_10_1016_j_comcom_2021_10_032
crossref_primary_10_1049_cmu2_12441
crossref_primary_10_1109_COMST_2020_3036778
crossref_primary_10_1109_ACCESS_2021_3067702
crossref_primary_10_1016_j_aej_2021_04_101
crossref_primary_10_1109_ACCESS_2020_2997761
crossref_primary_10_1142_S021926592143012X
crossref_primary_10_1109_TITS_2022_3181436
crossref_primary_10_1109_ACCESS_2022_3232073
crossref_primary_10_1109_ACCESS_2020_2990292
crossref_primary_10_1109_JIOT_2020_3007268
crossref_primary_10_1109_TITS_2020_3027437
crossref_primary_10_1007_s11334_024_00579_w
crossref_primary_10_1002_cpe_7836
crossref_primary_10_3390_s21217276
crossref_primary_10_1109_TITS_2021_3105458
crossref_primary_10_3390_fi13050118
Cites_doi 10.1109/JSAC.2016.2611964
10.1109/TWC.2018.2867474
10.1109/SURV.2013.030713.00189
10.1109/TNSE.2018.2877646
10.1109/SURV.2013.111313.00244
10.1109/ACCESS.2018.2808324
10.1109/TIT.2006.876219
10.1023/A:1013689704352
10.1109/TCOMM.2019.2898573
10.1109/MCOM.2017.1700169
10.1109/MCOM.2018.1701057
10.1002/ett.3627
10.1109/TII.2019.2903100
10.1109/TVT.2019.2926732
10.1109/TWC.2018.2840120
10.1109/TVT.2012.2185076
10.1109/JIOT.2018.2889503
10.1109/TNSE.2018.2852762
10.1109/JIOT.2018.2847731
10.1109/TWC.2017.2688392
10.1109/TWC.2016.2633522
10.1109/JSAC.2015.2435312
10.1109/TWC.2005.852129
10.2200/S00271ED1V01Y201006CNT007
10.1109/MCOM.2017.1700345
10.1109/JSAC.2013.130323
10.1109/JIOT.2018.2875544
10.1109/MCOM.2014.6807949
10.1109/TSP.2018.2841822
10.1109/TVT.2016.2615718
10.1109/TCOMM.2018.2857461
10.1109/COMST.2017.2682318
10.1109/JIOT.2018.2887229
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2019.2963371
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 4277
ExternalDocumentID 10_1109_JIOT_2019_2963371
8946558
Genre orig-research
GrantInformation_xml – fundername: Exploration Project of State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (North China Electric Power University)
  grantid: LAPS2019-12
  funderid: 10.13039/501100012605
– fundername: European Regional Development Fund (FEDER) through the Competitiveness and Internationalization (COMPETE 2020)
  funderid: 10.13039/501100008530
– fundername: National Natural Science Foundation of China
  grantid: 61971189
  funderid: 10.13039/501100001809
– fundername: i-Five: Extenso do acesso de espectro dinmico para rdio 5G
  grantid: POCI-01-0145-FEDER-030500
– fundername: Fundao para a ciłncia e Tecnologia
– fundername: Regional Operational Program of the Agarve (2020)
– fundername: Science and Technology Project of State Grid Corporation of China
  grantid: SGSDDK00KJJS1900405
  funderid: 10.13039/501100010880
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-2af53dc53a3b31e5f09d43bd672454b086e262da7f636fa258567c786e83746e3
IEDL.DBID RIE
ISSN 2327-4662
IngestDate Tue Sep 23 17:40:46 EDT 2025
Thu Apr 24 23:03:08 EDT 2025
Wed Oct 01 04:45:28 EDT 2025
Wed Aug 27 02:41:43 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-2af53dc53a3b31e5f09d43bd672454b086e262da7f636fa258567c786e83746e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3344-4463
0000-0001-9421-4795
0000-0001-6364-6149
0000-0002-1381-5095
0000-0003-2601-9327
0000-0001-7818-459X
PQID 2402498405
PQPubID 2040421
PageCount 18
ParticipantIDs proquest_journals_2402498405
ieee_primary_8946558
crossref_primary_10_1109_JIOT_2019_2963371
crossref_citationtrail_10_1109_JIOT_2019_2963371
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
sutton (ref21) 2018
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref6
  doi: 10.1109/JSAC.2016.2611964
– year: 2018
  ident: ref21
  publication-title: An Introduction to Reinforcement Learning
– ident: ref15
  doi: 10.1109/TWC.2018.2867474
– ident: ref23
  doi: 10.1109/SURV.2013.030713.00189
– ident: ref2
  doi: 10.1109/TNSE.2018.2877646
– ident: ref13
  doi: 10.1109/SURV.2013.111313.00244
– ident: ref3
  doi: 10.1109/ACCESS.2018.2808324
– ident: ref33
  doi: 10.1109/TIT.2006.876219
– ident: ref34
  doi: 10.1023/A:1013689704352
– ident: ref25
  doi: 10.1109/TCOMM.2019.2898573
– ident: ref12
  doi: 10.1109/MCOM.2017.1700169
– ident: ref1
  doi: 10.1109/MCOM.2018.1701057
– ident: ref7
  doi: 10.1002/ett.3627
– ident: ref14
  doi: 10.1109/TII.2019.2903100
– ident: ref17
  doi: 10.1109/TVT.2019.2926732
– ident: ref26
  doi: 10.1109/TWC.2018.2840120
– ident: ref30
  doi: 10.1109/TVT.2012.2185076
– ident: ref9
  doi: 10.1109/JIOT.2018.2889503
– ident: ref8
  doi: 10.1109/TNSE.2018.2852762
– ident: ref29
  doi: 10.1109/JIOT.2018.2847731
– ident: ref19
  doi: 10.1109/TWC.2017.2688392
– ident: ref28
  doi: 10.1109/TWC.2016.2633522
– ident: ref32
  doi: 10.1109/JSAC.2015.2435312
– ident: ref24
  doi: 10.1109/TWC.2005.852129
– ident: ref31
  doi: 10.2200/S00271ED1V01Y201006CNT007
– ident: ref10
  doi: 10.1109/MCOM.2017.1700345
– ident: ref20
  doi: 10.1109/JSAC.2013.130323
– ident: ref11
  doi: 10.1109/JIOT.2018.2875544
– ident: ref5
  doi: 10.1109/MCOM.2014.6807949
– ident: ref22
  doi: 10.1109/TSP.2018.2841822
– ident: ref18
  doi: 10.1109/TVT.2016.2615718
– ident: ref16
  doi: 10.1109/TCOMM.2018.2857461
– ident: ref27
  doi: 10.1109/COMST.2017.2682318
– ident: ref4
  doi: 10.1109/JIOT.2018.2887229
SSID ssj0001105196
Score 2.6029794
Snippet Edge computing provides a promising paradigm to support the implementation of Industrial Internet of Things (IIoT) by offloading computational-intensive tasks...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4260
SubjectTerms Ambient intelligence
Computation offloading
Computational modeling
Computer simulation
Constraints
Context
Context awareness
Edge computing
Energy budget
Industrial applications
Industrial Internet of Things
Industrial Internet of Things (IIoT)
Internet of Things
Lyapunov optimization
Machine learning
matching theory
Optimization
Reliability
Reliability theory
Resource allocation
Servers
Task analysis
Title Learning-Based Context-Aware Resource Allocation for Edge-Computing-Empowered Industrial IoT
URI https://ieeexplore.ieee.org/document/8946558
https://www.proquest.com/docview/2402498405
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50T158i-uLHDyJWdsmTTbHVVZUUC8reBBKk049qLuL7iL468206S4-EG-ldErgSzLzTSbzARy6CE0kJXLvuxyXfhfmtpSOk5aIMt1CliVdcL6-URd38uo-vV-A49ldGESsis-wQ4_VWX4xclNKlZ10DXX76i7Cotamvqs1z6fEFIyocHAZR-bk6vJ2QLVbppP4WSZ0_MX1VFoqPzbgyqucr8B1M566mOSpM53Yjvv41qrxvwNeheUQXrJePR_WYAGH67DSSDewsJI34CH0VX3kp96NFaxqUuU5cO89f0XW5PRZ75l8HWHHfHDL-sUj8vpnZNp_GZPGmjefC4Cwy9FgE-7O-4OzCx6EFrgTqZnwJC9TUbhU5MKKGNMyMoUUtlA6kam0nvVgopIi16USqswTTzGUdtq_9vRWKhRb0BqOhrgNLFdaos4NSml9pOUor6RV5ExiUdhYtiFqMMhc6EJOYhjPWcVGIpMRbBnBlgXY2nA0MxnXLTj--niDYJh9GBBow14DdBYW6VtGB0vSeIab7vxutQtLCdHrqr5xD1qT1ynu-xhkYg-qyfcJk0_ZRA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT-MwEB3xcYDLFpZdUSiLD3tCuCSxY9fH7qqoBQqXInFYKYqdCQfYFkErJH49nsQpgl2t9hZFmcjSsz3zxuN5AN9dhCaSErn3XY5LvwtzW0rHSUtEmV4hy5IuOI8v1fBant2kNytwvLwLg4hV8Rl26bE6yy9mbkGpspOeoW5fvVVYTz2r0PVtrbeMSkzhiApHl3FkTs5GVxOq3jLdxM8zoeN3zqdSU_ljC678ymkLxs2I6nKSu-5ibrvu5UOzxv8d8hZ8CgEm69czYhtWcPoZWo14AwtreQd-hc6qt_yHd2QFq9pUeRbcf84fkTVZfda_J29H6DEf3rJBcYu8_hmZDn4_kMqaN3-TAGGj2eQLXJ8OJj-HPEgtcCdSM-dJXqaicKnIhRUxpmVkCilsoXQiU2k978FEJUWuSyVUmSeeZCjttH_tCa5UKL7C2nQ2xV1gudISdW5QSutjLUeZJa0iZxKLwsayDVGDQeZCH3KSw7jPKj4SmYxgywi2LMDWhqOlyUPdhONfH-8QDMsPAwJt6DRAZ2GZPmV0tCSN57jp3t-tDmFjOBlfZBejy_N92EyIbFfVjh1Ymz8u8MBHJHP7rZqIryaQ3JU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning-Based+Context-Aware+Resource+Allocation+for+Edge-Computing-Empowered+Industrial+IoT&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Liao%2C+Haijun&rft.au=Zhou%2C+Zhenyu&rft.au=Zhao%2C+Xiongwen&rft.au=Zhang%2C+Lei&rft.date=2020-05-01&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=7&rft.issue=5&rft.spage=4260&rft.epage=4277&rft_id=info:doi/10.1109%2FJIOT.2019.2963371&rft.externalDocID=8946558
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon