Learning-Based Context-Aware Resource Allocation for Edge-Computing-Empowered Industrial IoT
Edge computing provides a promising paradigm to support the implementation of Industrial Internet of Things (IIoT) by offloading computational-intensive tasks from resource-limited machine-type devices (MTDs) to powerful edge servers. However, the performance gain of edge computing may be severely c...
Saved in:
Published in | IEEE internet of things journal Vol. 7; no. 5; pp. 4260 - 4277 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.05.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2327-4662 2327-4662 |
DOI | 10.1109/JIOT.2019.2963371 |
Cover
Abstract | Edge computing provides a promising paradigm to support the implementation of Industrial Internet of Things (IIoT) by offloading computational-intensive tasks from resource-limited machine-type devices (MTDs) to powerful edge servers. However, the performance gain of edge computing may be severely compromised due to limited spectrum resources, capacity-constrained batteries, and context unawareness. In this article, we consider the optimization of channel selection that is critical for efficient and reliable task delivery. We aim at maximizing the long-term throughput subject to long-term constraints of energy budget and service reliability. We propose a learning-based channel selection framework with service reliability awareness, energy awareness, backlog awareness, and conflict awareness, by leveraging the combined power of machine learning, Lyapunov optimization, and matching theory. We provide rigorous theoretical analysis, and prove that the proposed framework can achieve guaranteed performance with a bounded deviation from the optimal performance with global state information (GSI) based on only local and causal information. Finally, simulations are conducted under both single-MTD and multi-MTD scenarios to verify the effectiveness and reliability of the proposed framework. |
---|---|
AbstractList | Edge computing provides a promising paradigm to support the implementation of Industrial Internet of Things (IIoT) by offloading computational-intensive tasks from resource-limited machine-type devices (MTDs) to powerful edge servers. However, the performance gain of edge computing may be severely compromised due to limited spectrum resources, capacity-constrained batteries, and context unawareness. In this article, we consider the optimization of channel selection that is critical for efficient and reliable task delivery. We aim at maximizing the long-term throughput subject to long-term constraints of energy budget and service reliability. We propose a learning-based channel selection framework with service reliability awareness, energy awareness, backlog awareness, and conflict awareness, by leveraging the combined power of machine learning, Lyapunov optimization, and matching theory. We provide rigorous theoretical analysis, and prove that the proposed framework can achieve guaranteed performance with a bounded deviation from the optimal performance with global state information (GSI) based on only local and causal information. Finally, simulations are conducted under both single-MTD and multi-MTD scenarios to verify the effectiveness and reliability of the proposed framework. |
Author | Ahmed, Syed Hassan Zhao, Xiongwen Mumtaz, Shahid Liao, Haijun Zhou, Zhenyu Bashir, Ali Kashif Jolfaei, Alireza Zhang, Lei |
Author_xml | – sequence: 1 givenname: Haijun surname: Liao fullname: Liao, Haijun email: haijun_liao@ncepu.edu.cn organization: State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources and the School of Electrical and Electronic Engineering, North China Electric Power University, Beijing, China – sequence: 2 givenname: Zhenyu orcidid: 0000-0002-3344-4463 surname: Zhou fullname: Zhou, Zhenyu email: zhenyu_zhou@ncepu.edu.cn organization: State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources and the School of Electrical and Electronic Engineering, North China Electric Power University, Beijing, China – sequence: 3 givenname: Xiongwen orcidid: 0000-0001-9421-4795 surname: Zhao fullname: Zhao, Xiongwen email: zhaoxw@ncepu.edu.cn organization: State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources and the School of Electrical and Electronic Engineering, North China Electric Power University, Beijing, China – sequence: 4 givenname: Lei surname: Zhang fullname: Zhang, Lei email: 18660130685@163.com organization: State Grid Corporation of China, Shandong Electric Power Research Institute, Jinan, China – sequence: 5 givenname: Shahid orcidid: 0000-0001-6364-6149 surname: Mumtaz fullname: Mumtaz, Shahid email: smumtaz@av.it.pt organization: Instituto de Telecomunicações, Aveiro, Portugal – sequence: 6 givenname: Alireza orcidid: 0000-0001-7818-459X surname: Jolfaei fullname: Jolfaei, Alireza email: alireza.jolfaei@mq.edu.au organization: Department of Computing, Macquarie University, Sydney, NSW, Australia – sequence: 7 givenname: Syed Hassan orcidid: 0000-0002-1381-5095 surname: Ahmed fullname: Ahmed, Syed Hassan email: sh.ahmed@ieee.org organization: Department of Electrical and Computer Science, Georgia Southern University, Statesboro, GA, USA – sequence: 8 givenname: Ali Kashif orcidid: 0000-0003-2601-9327 surname: Bashir fullname: Bashir, Ali Kashif email: dr.alikashif.b@ieee.org organization: Department of Computing and Mathematics, Manchester Metropolitan University, Manchester, U.K |
BookMark | eNp9kE1Lw0AQhhepYK39AeIl4Dl1v5M91lA1UihIvQlhm0xKSpqNuxuq_97EFhEPnmYY3mdmeC7RqDENIHRN8IwQrO6e09V6RjFRM6okYxE5Q2PKaBRyKenoV3-Bps7tMMY9JoiSY_S2BG2bqtmG99pBESSm8fDhw_lBWwhewJnO5hDM69rk2lemCUpjg0WxhTAx-7bzA7rYt-YAtsfTpuict5Wug9Ssr9B5qWsH01OdoNeHxTp5CperxzSZL8OcCeVDqkvBilwwzTaMgCixKjjbFDKiXPANjiVQSQsdlZLJUlMRCxnlUT-OWcQlsAm6Pe5trXnvwPls17_d9CczyjHlKuZY9ClyTOXWOGehzFpb7bX9zAjOBo_Z4DEbPGYnjz0T_WHyyn978FZX9b_kzZGsAODnUqy4FCJmX8OfgV8 |
CODEN | IITJAU |
CitedBy_id | crossref_primary_10_1016_j_eng_2021_08_022 crossref_primary_10_1109_TCOMM_2023_3274165 crossref_primary_10_1109_ACCESS_2020_2979491 crossref_primary_10_1155_2022_5051496 crossref_primary_10_1016_j_seta_2021_101473 crossref_primary_10_1109_TII_2021_3137349 crossref_primary_10_1007_s00530_020_00704_2 crossref_primary_10_1002_dac_4925 crossref_primary_10_1016_j_comnet_2022_108957 crossref_primary_10_1016_j_adhoc_2021_102553 crossref_primary_10_1016_j_phycom_2022_101949 crossref_primary_10_1177_15501329221097815 crossref_primary_10_1016_j_swevo_2025_101878 crossref_primary_10_32604_cmes_2023_045277 crossref_primary_10_1109_TAES_2023_3251967 crossref_primary_10_1109_ACCESS_2021_3050841 crossref_primary_10_1109_TCSS_2021_3129259 crossref_primary_10_1002_dac_5724 crossref_primary_10_1007_s13748_021_00274_y crossref_primary_10_1016_j_comnet_2022_109536 crossref_primary_10_1109_ACCESS_2020_3038249 crossref_primary_10_1109_TII_2020_3006885 crossref_primary_10_1109_JIOT_2024_3381183 crossref_primary_10_1109_TGCN_2022_3216882 crossref_primary_10_1109_ACCESS_2020_3026711 crossref_primary_10_3233_THC_213000 crossref_primary_10_1109_ACCESS_2020_3011904 crossref_primary_10_3233_THC_213001 crossref_primary_10_1080_10447318_2022_2122111 crossref_primary_10_1109_ACCESS_2020_3011503 crossref_primary_10_1109_TVT_2020_3022766 crossref_primary_10_1587_transfun_2023EAP1094 crossref_primary_10_1007_s13369_021_05913_z crossref_primary_10_1109_JIOT_2022_3142185 crossref_primary_10_1109_LCOMM_2021_3122129 crossref_primary_10_1109_ACCESS_2020_3033421 crossref_primary_10_1109_TGCN_2022_3187463 crossref_primary_10_3390_e25121640 crossref_primary_10_1007_s40031_023_00928_6 crossref_primary_10_1016_j_comnet_2023_109666 crossref_primary_10_1109_JIOT_2020_3020951 crossref_primary_10_1109_TCCN_2020_3006268 crossref_primary_10_1016_j_apenergy_2023_122284 crossref_primary_10_1109_TVT_2020_2986088 crossref_primary_10_1109_ACCESS_2021_3051557 crossref_primary_10_1109_JSEN_2020_2981558 crossref_primary_10_3233_THC_213011 crossref_primary_10_1109_ACCESS_2020_2974293 crossref_primary_10_3390_s20154158 crossref_primary_10_1109_TCOMM_2024_3412773 crossref_primary_10_1109_TVT_2020_2986769 crossref_primary_10_1007_s10462_024_10947_4 crossref_primary_10_1007_s10586_022_03605_3 crossref_primary_10_1002_dac_5628 crossref_primary_10_1109_ACCESS_2020_3015289 crossref_primary_10_1016_j_future_2023_07_035 crossref_primary_10_1109_ACCESS_2021_3100316 crossref_primary_10_1109_JIOT_2020_3040657 crossref_primary_10_3390_app14167104 crossref_primary_10_1109_TITS_2021_3116421 crossref_primary_10_3390_su151310150 crossref_primary_10_3390_s21165261 crossref_primary_10_1109_LCOMM_2020_3004523 crossref_primary_10_1109_TGCN_2021_3081616 crossref_primary_10_3934_era_2023035 crossref_primary_10_1109_ACCESS_2021_3050238 crossref_primary_10_1109_LWC_2020_3044335 crossref_primary_10_1109_ACCESS_2020_3001572 crossref_primary_10_1109_TII_2021_3128506 crossref_primary_10_1002_ett_4647 crossref_primary_10_1016_j_heliyon_2022_e10044 crossref_primary_10_1109_ACCESS_2021_3074145 crossref_primary_10_3390_s21237902 crossref_primary_10_1109_TWC_2020_3010701 crossref_primary_10_1109_ACCESS_2020_3046041 crossref_primary_10_1109_JIOT_2020_3030856 crossref_primary_10_1145_3514238 crossref_primary_10_1109_TMC_2023_3329170 crossref_primary_10_1109_ACCESS_2020_2981130 crossref_primary_10_1109_COMST_2021_3106401 crossref_primary_10_1109_ACCESS_2020_3011496 crossref_primary_10_4018_IJABIM_287589 crossref_primary_10_1109_TNSM_2023_3332509 crossref_primary_10_4018_IJMCMC_306976 crossref_primary_10_4018_IJMCMC_346990 crossref_primary_10_1109_ACCESS_2020_3023479 crossref_primary_10_1109_JIOT_2021_3063846 crossref_primary_10_1016_j_compeleceng_2021_107537 crossref_primary_10_1109_JIOT_2020_3026355 crossref_primary_10_1109_ACCESS_2021_3069137 crossref_primary_10_1016_j_adhoc_2023_103322 crossref_primary_10_1109_JSAC_2020_3020680 crossref_primary_10_1007_s11277_021_08121_y crossref_primary_10_1007_s13369_021_05876_1 crossref_primary_10_1016_j_lmot_2023_101938 crossref_primary_10_1109_TCE_2023_3344514 crossref_primary_10_1109_TITS_2021_3052979 crossref_primary_10_1088_1742_6596_2378_1_012097 crossref_primary_10_1109_TITS_2022_3172668 crossref_primary_10_1109_TVT_2023_3235520 crossref_primary_10_1109_ACCESS_2020_2982293 crossref_primary_10_1016_j_avb_2021_101629 crossref_primary_10_1002_ett_4151 crossref_primary_10_1007_s13369_021_05902_2 crossref_primary_10_1109_TITS_2021_3118701 crossref_primary_10_1016_j_aej_2021_11_029 crossref_primary_10_1007_s11036_023_02212_9 crossref_primary_10_1109_TVT_2022_3189019 crossref_primary_10_1016_j_seta_2021_101201 crossref_primary_10_1109_TCCN_2021_3101239 crossref_primary_10_1109_TII_2024_3424347 crossref_primary_10_1142_S0218488522400153 crossref_primary_10_1109_TII_2020_3024611 crossref_primary_10_1016_j_suscom_2020_100463 crossref_primary_10_1080_21642583_2024_2342815 crossref_primary_10_1109_ACCESS_2021_3051505 crossref_primary_10_1007_s00521_024_09723_w crossref_primary_10_1109_JIOT_2021_3110910 crossref_primary_10_1088_1742_6596_2584_1_012132 crossref_primary_10_1155_2022_9891117 crossref_primary_10_32604_csse_2023_030538 crossref_primary_10_1007_s11277_021_09323_0 crossref_primary_10_1109_ACCESS_2020_3032469 crossref_primary_10_1109_JIOT_2022_3181990 crossref_primary_10_1109_TII_2022_3186039 crossref_primary_10_1109_TGCN_2021_3063224 crossref_primary_10_1016_j_chaos_2022_112584 crossref_primary_10_1109_JSAC_2023_3310101 crossref_primary_10_1109_JIOT_2023_3268375 crossref_primary_10_1109_TITS_2021_3135197 crossref_primary_10_1111_exsy_12820 crossref_primary_10_1109_TII_2020_3041159 crossref_primary_10_32604_cmc_2021_015369 crossref_primary_10_1080_01969722_2022_2080341 crossref_primary_10_1186_s13677_024_00680_2 crossref_primary_10_1016_j_jmsy_2022_01_010 crossref_primary_10_1016_j_jclepro_2021_129230 crossref_primary_10_1109_TNSE_2020_2991106 crossref_primary_10_1016_j_compeleceng_2022_107950 crossref_primary_10_1142_S0218126624501974 crossref_primary_10_1109_JIOT_2021_3102950 crossref_primary_10_1109_TCE_2024_3478794 crossref_primary_10_3390_pr9112084 crossref_primary_10_1109_TGCN_2021_3076582 crossref_primary_10_1155_2022_6772467 crossref_primary_10_1109_OJCS_2020_3006205 crossref_primary_10_1587_transfun_2024EAP1062 crossref_primary_10_1109_MWC_001_2100102 crossref_primary_10_1109_ACCESS_2024_3349587 crossref_primary_10_1016_j_future_2021_07_036 crossref_primary_10_1109_JIOT_2021_3052082 crossref_primary_10_1109_TII_2022_3141435 crossref_primary_10_1038_s41598_024_71506_z crossref_primary_10_1016_j_aej_2023_11_045 crossref_primary_10_1049_cmu2_12442 crossref_primary_10_1109_TNSE_2024_3503996 crossref_primary_10_1109_TVT_2020_2981959 crossref_primary_10_1016_j_comcom_2021_10_032 crossref_primary_10_1049_cmu2_12441 crossref_primary_10_1109_COMST_2020_3036778 crossref_primary_10_1109_ACCESS_2021_3067702 crossref_primary_10_1016_j_aej_2021_04_101 crossref_primary_10_1109_ACCESS_2020_2997761 crossref_primary_10_1142_S021926592143012X crossref_primary_10_1109_TITS_2022_3181436 crossref_primary_10_1109_ACCESS_2022_3232073 crossref_primary_10_1109_ACCESS_2020_2990292 crossref_primary_10_1109_JIOT_2020_3007268 crossref_primary_10_1109_TITS_2020_3027437 crossref_primary_10_1007_s11334_024_00579_w crossref_primary_10_1002_cpe_7836 crossref_primary_10_3390_s21217276 crossref_primary_10_1109_TITS_2021_3105458 crossref_primary_10_3390_fi13050118 |
Cites_doi | 10.1109/JSAC.2016.2611964 10.1109/TWC.2018.2867474 10.1109/SURV.2013.030713.00189 10.1109/TNSE.2018.2877646 10.1109/SURV.2013.111313.00244 10.1109/ACCESS.2018.2808324 10.1109/TIT.2006.876219 10.1023/A:1013689704352 10.1109/TCOMM.2019.2898573 10.1109/MCOM.2017.1700169 10.1109/MCOM.2018.1701057 10.1002/ett.3627 10.1109/TII.2019.2903100 10.1109/TVT.2019.2926732 10.1109/TWC.2018.2840120 10.1109/TVT.2012.2185076 10.1109/JIOT.2018.2889503 10.1109/TNSE.2018.2852762 10.1109/JIOT.2018.2847731 10.1109/TWC.2017.2688392 10.1109/TWC.2016.2633522 10.1109/JSAC.2015.2435312 10.1109/TWC.2005.852129 10.2200/S00271ED1V01Y201006CNT007 10.1109/MCOM.2017.1700345 10.1109/JSAC.2013.130323 10.1109/JIOT.2018.2875544 10.1109/MCOM.2014.6807949 10.1109/TSP.2018.2841822 10.1109/TVT.2016.2615718 10.1109/TCOMM.2018.2857461 10.1109/COMST.2017.2682318 10.1109/JIOT.2018.2887229 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/JIOT.2019.2963371 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2327-4662 |
EndPage | 4277 |
ExternalDocumentID | 10_1109_JIOT_2019_2963371 8946558 |
Genre | orig-research |
GrantInformation_xml | – fundername: Exploration Project of State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (North China Electric Power University) grantid: LAPS2019-12 funderid: 10.13039/501100012605 – fundername: European Regional Development Fund (FEDER) through the Competitiveness and Internationalization (COMPETE 2020) funderid: 10.13039/501100008530 – fundername: National Natural Science Foundation of China grantid: 61971189 funderid: 10.13039/501100001809 – fundername: i-Five: Extenso do acesso de espectro dinmico para rdio 5G grantid: POCI-01-0145-FEDER-030500 – fundername: Fundao para a ciłncia e Tecnologia – fundername: Regional Operational Program of the Agarve (2020) – fundername: Science and Technology Project of State Grid Corporation of China grantid: SGSDDK00KJJS1900405 funderid: 10.13039/501100010880 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-2af53dc53a3b31e5f09d43bd672454b086e262da7f636fa258567c786e83746e3 |
IEDL.DBID | RIE |
ISSN | 2327-4662 |
IngestDate | Tue Sep 23 17:40:46 EDT 2025 Thu Apr 24 23:03:08 EDT 2025 Wed Oct 01 04:45:28 EDT 2025 Wed Aug 27 02:41:43 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-2af53dc53a3b31e5f09d43bd672454b086e262da7f636fa258567c786e83746e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3344-4463 0000-0001-9421-4795 0000-0001-6364-6149 0000-0002-1381-5095 0000-0003-2601-9327 0000-0001-7818-459X |
PQID | 2402498405 |
PQPubID | 2040421 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2402498405 ieee_primary_8946558 crossref_primary_10_1109_JIOT_2019_2963371 crossref_citationtrail_10_1109_JIOT_2019_2963371 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE internet of things journal |
PublicationTitleAbbrev | JIoT |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 sutton (ref21) 2018 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref6 doi: 10.1109/JSAC.2016.2611964 – year: 2018 ident: ref21 publication-title: An Introduction to Reinforcement Learning – ident: ref15 doi: 10.1109/TWC.2018.2867474 – ident: ref23 doi: 10.1109/SURV.2013.030713.00189 – ident: ref2 doi: 10.1109/TNSE.2018.2877646 – ident: ref13 doi: 10.1109/SURV.2013.111313.00244 – ident: ref3 doi: 10.1109/ACCESS.2018.2808324 – ident: ref33 doi: 10.1109/TIT.2006.876219 – ident: ref34 doi: 10.1023/A:1013689704352 – ident: ref25 doi: 10.1109/TCOMM.2019.2898573 – ident: ref12 doi: 10.1109/MCOM.2017.1700169 – ident: ref1 doi: 10.1109/MCOM.2018.1701057 – ident: ref7 doi: 10.1002/ett.3627 – ident: ref14 doi: 10.1109/TII.2019.2903100 – ident: ref17 doi: 10.1109/TVT.2019.2926732 – ident: ref26 doi: 10.1109/TWC.2018.2840120 – ident: ref30 doi: 10.1109/TVT.2012.2185076 – ident: ref9 doi: 10.1109/JIOT.2018.2889503 – ident: ref8 doi: 10.1109/TNSE.2018.2852762 – ident: ref29 doi: 10.1109/JIOT.2018.2847731 – ident: ref19 doi: 10.1109/TWC.2017.2688392 – ident: ref28 doi: 10.1109/TWC.2016.2633522 – ident: ref32 doi: 10.1109/JSAC.2015.2435312 – ident: ref24 doi: 10.1109/TWC.2005.852129 – ident: ref31 doi: 10.2200/S00271ED1V01Y201006CNT007 – ident: ref10 doi: 10.1109/MCOM.2017.1700345 – ident: ref20 doi: 10.1109/JSAC.2013.130323 – ident: ref11 doi: 10.1109/JIOT.2018.2875544 – ident: ref5 doi: 10.1109/MCOM.2014.6807949 – ident: ref22 doi: 10.1109/TSP.2018.2841822 – ident: ref18 doi: 10.1109/TVT.2016.2615718 – ident: ref16 doi: 10.1109/TCOMM.2018.2857461 – ident: ref27 doi: 10.1109/COMST.2017.2682318 – ident: ref4 doi: 10.1109/JIOT.2018.2887229 |
SSID | ssj0001105196 |
Score | 2.6029794 |
Snippet | Edge computing provides a promising paradigm to support the implementation of Industrial Internet of Things (IIoT) by offloading computational-intensive tasks... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4260 |
SubjectTerms | Ambient intelligence Computation offloading Computational modeling Computer simulation Constraints Context Context awareness Edge computing Energy budget Industrial applications Industrial Internet of Things Industrial Internet of Things (IIoT) Internet of Things Lyapunov optimization Machine learning matching theory Optimization Reliability Reliability theory Resource allocation Servers Task analysis |
Title | Learning-Based Context-Aware Resource Allocation for Edge-Computing-Empowered Industrial IoT |
URI | https://ieeexplore.ieee.org/document/8946558 https://www.proquest.com/docview/2402498405 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50T158i-uLHDyJWdsmTTbHVVZUUC8reBBKk049qLuL7iL468206S4-EG-ldErgSzLzTSbzARy6CE0kJXLvuxyXfhfmtpSOk5aIMt1CliVdcL6-URd38uo-vV-A49ldGESsis-wQ4_VWX4xclNKlZ10DXX76i7Cotamvqs1z6fEFIyocHAZR-bk6vJ2QLVbppP4WSZ0_MX1VFoqPzbgyqucr8B1M566mOSpM53Yjvv41qrxvwNeheUQXrJePR_WYAGH67DSSDewsJI34CH0VX3kp96NFaxqUuU5cO89f0XW5PRZ75l8HWHHfHDL-sUj8vpnZNp_GZPGmjefC4Cwy9FgE-7O-4OzCx6EFrgTqZnwJC9TUbhU5MKKGNMyMoUUtlA6kam0nvVgopIi16USqswTTzGUdtq_9vRWKhRb0BqOhrgNLFdaos4NSml9pOUor6RV5ExiUdhYtiFqMMhc6EJOYhjPWcVGIpMRbBnBlgXY2nA0MxnXLTj--niDYJh9GBBow14DdBYW6VtGB0vSeIab7vxutQtLCdHrqr5xD1qT1ynu-xhkYg-qyfcJk0_ZRA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT-MwEB3xcYDLFpZdUSiLD3tCuCSxY9fH7qqoBQqXInFYKYqdCQfYFkErJH49nsQpgl2t9hZFmcjSsz3zxuN5AN9dhCaSErn3XY5LvwtzW0rHSUtEmV4hy5IuOI8v1fBant2kNytwvLwLg4hV8Rl26bE6yy9mbkGpspOeoW5fvVVYTz2r0PVtrbeMSkzhiApHl3FkTs5GVxOq3jLdxM8zoeN3zqdSU_ljC678ymkLxs2I6nKSu-5ibrvu5UOzxv8d8hZ8CgEm69czYhtWcPoZWo14AwtreQd-hc6qt_yHd2QFq9pUeRbcf84fkTVZfda_J29H6DEf3rJBcYu8_hmZDn4_kMqaN3-TAGGj2eQLXJ8OJj-HPEgtcCdSM-dJXqaicKnIhRUxpmVkCilsoXQiU2k978FEJUWuSyVUmSeeZCjttH_tCa5UKL7C2nQ2xV1gudISdW5QSutjLUeZJa0iZxKLwsayDVGDQeZCH3KSw7jPKj4SmYxgywi2LMDWhqOlyUPdhONfH-8QDMsPAwJt6DRAZ2GZPmV0tCSN57jp3t-tDmFjOBlfZBejy_N92EyIbFfVjh1Ymz8u8MBHJHP7rZqIryaQ3JU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning-Based+Context-Aware+Resource+Allocation+for+Edge-Computing-Empowered+Industrial+IoT&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Liao%2C+Haijun&rft.au=Zhou%2C+Zhenyu&rft.au=Zhao%2C+Xiongwen&rft.au=Zhang%2C+Lei&rft.date=2020-05-01&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=7&rft.issue=5&rft.spage=4260&rft.epage=4277&rft_id=info:doi/10.1109%2FJIOT.2019.2963371&rft.externalDocID=8946558 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |