Learning-Based Context-Aware Resource Allocation for Edge-Computing-Empowered Industrial IoT

Edge computing provides a promising paradigm to support the implementation of Industrial Internet of Things (IIoT) by offloading computational-intensive tasks from resource-limited machine-type devices (MTDs) to powerful edge servers. However, the performance gain of edge computing may be severely c...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 7; no. 5; pp. 4260 - 4277
Main Authors Liao, Haijun, Zhou, Zhenyu, Zhao, Xiongwen, Zhang, Lei, Mumtaz, Shahid, Jolfaei, Alireza, Ahmed, Syed Hassan, Bashir, Ali Kashif
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.05.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2327-4662
2327-4662
DOI10.1109/JIOT.2019.2963371

Cover

More Information
Summary:Edge computing provides a promising paradigm to support the implementation of Industrial Internet of Things (IIoT) by offloading computational-intensive tasks from resource-limited machine-type devices (MTDs) to powerful edge servers. However, the performance gain of edge computing may be severely compromised due to limited spectrum resources, capacity-constrained batteries, and context unawareness. In this article, we consider the optimization of channel selection that is critical for efficient and reliable task delivery. We aim at maximizing the long-term throughput subject to long-term constraints of energy budget and service reliability. We propose a learning-based channel selection framework with service reliability awareness, energy awareness, backlog awareness, and conflict awareness, by leveraging the combined power of machine learning, Lyapunov optimization, and matching theory. We provide rigorous theoretical analysis, and prove that the proposed framework can achieve guaranteed performance with a bounded deviation from the optimal performance with global state information (GSI) based on only local and causal information. Finally, simulations are conducted under both single-MTD and multi-MTD scenarios to verify the effectiveness and reliability of the proposed framework.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2327-4662
2327-4662
DOI:10.1109/JIOT.2019.2963371