Modeling, Analysis, and Mitigation of Dynamic Botnet Formation in Wireless IoT Networks

The Internet of Things (IoT) relies heavily on wireless communication devices that are able to discover and interact with other wireless devices in their vicinity. The communication flexibility coupled with software vulnerabilities in devices, due to low cost and short time-to-market, exposes them t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information forensics and security Vol. 14; no. 9; pp. 2412 - 2426
Main Authors Farooq, Muhammad Junaid, Quanyan Zhu
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1556-6013
1556-6021
DOI10.1109/TIFS.2019.2898817

Cover

More Information
Summary:The Internet of Things (IoT) relies heavily on wireless communication devices that are able to discover and interact with other wireless devices in their vicinity. The communication flexibility coupled with software vulnerabilities in devices, due to low cost and short time-to-market, exposes them to a high risk of malware infiltration. Malware may infect a large number of network devices using device-to-device (D2D) communication resulting in the formation of a botnet, i.e., a network of infected devices controlled by a common malware. A botmaster may exploit it to launch a network-wide attack sabotaging infrastructure and facilities, or for malicious purposes such as collecting ransom. In this paper, we propose an analytical model to study the D2D propagation of malware in wireless IoT networks. Leveraging tools from dynamic population processes and point process theory, we capture malware infiltration and coordination process over a network topology. The analysis of mean-field equilibrium in the population is used to construct and solve an optimization problem for the network defender to prevent botnet formation by patching devices while causing minimum overhead to network operation. The developed analytical model serves as a basis for assisting the planning, design, and defense of such networks from a defender's standpoint.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1556-6013
1556-6021
DOI:10.1109/TIFS.2019.2898817