Search Space Analysis of Evolvable Robot Morphologies

We present a study on morphological traits of evolved modular robots. We note that the evolutionary search space –the set of obtainable morphologies– depends on the given representation and reproduction operators and we propose a framework to assess morphological traits in this search space regardle...

Full description

Saved in:
Bibliographic Details
Published inApplications of Evolutionary Computation Vol. 10784; pp. 703 - 718
Main Authors Miras, Karine, Haasdijk, Evert, Glette, Kyrre, Eiben, A. E.
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2018
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783319775371
3319775375
ISSN0302-9743
1611-3349
1611-3349
DOI10.1007/978-3-319-77538-8_47

Cover

More Information
Summary:We present a study on morphological traits of evolved modular robots. We note that the evolutionary search space –the set of obtainable morphologies– depends on the given representation and reproduction operators and we propose a framework to assess morphological traits in this search space regardless of a specific environment and/or task. To this end, we present eight quantifiable morphological descriptors and a generic novelty search algorithm to produce a diverse set of morphologies for any given representation. With this machinery, we perform a comparison between a direct encoding and a generative encoding. The results demonstrate that our framework permits to find a very diverse set of bodies, allowing a morphological diversity investigation. Furthermore, the analysis showed that despite the high levels of diversity, a bias to certain traits in the population was detected. Surprisingly, the two encoding methods showed no significant difference in the diversity levels of the evolved morphologies or their morphological traits.
ISBN:9783319775371
3319775375
ISSN:0302-9743
1611-3349
1611-3349
DOI:10.1007/978-3-319-77538-8_47