Search Space Analysis of Evolvable Robot Morphologies
We present a study on morphological traits of evolved modular robots. We note that the evolutionary search space –the set of obtainable morphologies– depends on the given representation and reproduction operators and we propose a framework to assess morphological traits in this search space regardle...
Saved in:
Published in | Applications of Evolutionary Computation Vol. 10784; pp. 703 - 718 |
---|---|
Main Authors | , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2018
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 9783319775371 3319775375 |
ISSN | 0302-9743 1611-3349 1611-3349 |
DOI | 10.1007/978-3-319-77538-8_47 |
Cover
Summary: | We present a study on morphological traits of evolved modular robots. We note that the evolutionary search space –the set of obtainable morphologies– depends on the given representation and reproduction operators and we propose a framework to assess morphological traits in this search space regardless of a specific environment and/or task. To this end, we present eight quantifiable morphological descriptors and a generic novelty search algorithm to produce a diverse set of morphologies for any given representation. With this machinery, we perform a comparison between a direct encoding and a generative encoding. The results demonstrate that our framework permits to find a very diverse set of bodies, allowing a morphological diversity investigation. Furthermore, the analysis showed that despite the high levels of diversity, a bias to certain traits in the population was detected. Surprisingly, the two encoding methods showed no significant difference in the diversity levels of the evolved morphologies or their morphological traits. |
---|---|
ISBN: | 9783319775371 3319775375 |
ISSN: | 0302-9743 1611-3349 1611-3349 |
DOI: | 10.1007/978-3-319-77538-8_47 |