A Dynamic Bayesian Network Structure for Joint Diagnostics and Prognostics of Complex Engineering Systems

Dynamic Bayesian networks (DBNs) represent complex time-dependent causal relationships through the use of conditional probabilities and directed acyclic graph models. DBNs enable the forward and backward inference of system states, diagnosing current system health, and forecasting future system prog...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms Vol. 13; no. 3; p. 64
Main Authors Lewis, Austin D., Groth, Katrina M.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2020
Subjects
Online AccessGet full text
ISSN1999-4893
1999-4893
DOI10.3390/a13030064

Cover

More Information
Summary:Dynamic Bayesian networks (DBNs) represent complex time-dependent causal relationships through the use of conditional probabilities and directed acyclic graph models. DBNs enable the forward and backward inference of system states, diagnosing current system health, and forecasting future system prognosis within the same modeling framework. As a result, there has been growing interest in using DBNs for reliability engineering problems and applications in risk assessment. However, there are open questions about how they can be used to support diagnostics and prognostic health monitoring of a complex engineering system (CES), e.g., power plants, processing facilities and maritime vessels. These systems’ tightly integrated human, hardware, and software components and dynamic operational environments have previously been difficult to model. As part of the growing literature advancing the understanding of how DBNs can be used to improve the risk assessments and health monitoring of CESs, this paper shows the prognostic and diagnostic inference capabilities that are possible to encapsulate within a single DBN model. Using simulated accident sequence data from a model sodium fast nuclear reactor as a case study, a DBN is designed, quantified, and verified based on evidence associated with a transient overpower. The results indicate that a joint prognostic and diagnostic model that is responsive to new system evidence can be generated from operating data to represent CES health. Such a model can therefore serve as another training tool for CES operators to better prepare for accident scenarios.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1999-4893
1999-4893
DOI:10.3390/a13030064