Improved Resonant Converter for Dynamic Wireless Power Transfer Employing a Floating-Frequency Switching Algorithm and an Optimized Coil Shape

This paper offers a new EF-class converter for dynamic wireless power transfer application. The proposed high-frequency converter employs a floating-frequency switching algorithm to control the converter in a continuous frequency range, eliminate the requirement to any additional operational data fr...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; pp. 56914 - 56924
Main Authors Ghohfarokhi, Shahriar Sarmast, Tarzamni, Hadi, Tahami, Farzad, Kyyra, Jorma
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2022.3175880

Cover

More Information
Summary:This paper offers a new EF-class converter for dynamic wireless power transfer application. The proposed high-frequency converter employs a floating-frequency switching algorithm to control the converter in a continuous frequency range, eliminate the requirement to any additional operational data from the secondary (receiver) side, accelerate the load impedance match while moving, maximize the transferred power rate, reduce charging interval and compensate power transfer tolerances. Moreover, an optimized super elliptical shape coil is designed to cope with lateral misalignment, enhance coil coupling, and increase efficiency. In the proposed converter, (i) soft switching is implemented to increase switching frequency, decrease passive components size, and improve power density, (ii) undesired voltage harmonics are attenuated to reduce peak voltage stress of the power switch in a wide frequency range, (iii) the receiver side is enabled for higher mobility with stable power transfer, and (iv) the resonant frequency is updated to compensate non-accurate values of passive components in experimental prototyping. In this study, the operational analytics, compensation method, control algorithm, coil design and converter optimization are followed with some comparisons to present the converter capabilities. In addition, simulation and experimental results are provided under different degrees of misalignment to verify the accuracy of theoretical analytics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3175880