Optimal Weighting Factor Design of Finite Control Set Model Predictive Control Based on Multiobjective Ant Colony Optimization

In this article, an improved multiobjective ant colony optimization (ACO) algorithm is proposed to design the weighting factors (WFs) in the model predictive control of power converters. First, the principle of the multiobjective ACO algorithm is introduced. Then, the WF design process based on the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 71; no. 7; pp. 1 - 11
Main Authors Hu, Linqiang, Lei, Wanjun, Zhao, Jiaqi, Sun, Xing
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0046
1557-9948
DOI10.1109/TIE.2023.3301534

Cover

Abstract In this article, an improved multiobjective ant colony optimization (ACO) algorithm is proposed to design the weighting factors (WFs) in the model predictive control of power converters. First, the principle of the multiobjective ACO algorithm is introduced. Then, the WF design process based on the multiobjective ACO algorithm is given in both the single-function mode and the Pareto mode. Finally, improvement measures are proposed for the multiobjective ACO algorithm to reduce the calculation and accelerate the convergence. Simulations and experiments are carried out on a parallel three-level dc-dc converter. The results show that the proposed method is faster and less-computational than the traditional ACO algorithm, and is more accurate than the particle swarm optimization algorithm. With the proposed method, higher solution diversity and smaller control error can be achieved. In addition, the proposed method can also be used for WF online tuning, which will bring more benefits when the converter parameters are mismatched.
AbstractList In this article, an improved multiobjective ant colony optimization (ACO) algorithm is proposed to design the weighting factors (WFs) in the model predictive control of power converters. First, the principle of the multiobjective ACO algorithm is introduced. Then, the WF design process based on the multiobjective ACO algorithm is given in both the single-function mode and the Pareto mode. Finally, improvement measures are proposed for the multiobjective ACO algorithm to reduce the calculation and accelerate the convergence. Simulations and experiments are carried out on a parallel three-level dc-dc converter. The results show that the proposed method is faster and less-computational than the traditional ACO algorithm, and is more accurate than the particle swarm optimization algorithm. With the proposed method, higher solution diversity and smaller control error can be achieved. In addition, the proposed method can also be used for WF online tuning, which will bring more benefits when the converter parameters are mismatched.
Author Lei, Wanjun
Sun, Xing
Zhao, Jiaqi
Hu, Linqiang
Author_xml – sequence: 1
  givenname: Linqiang
  orcidid: 0000-0002-0281-7220
  surname: Hu
  fullname: Hu, Linqiang
  organization: Institute of Electrical Science and Technology, Xi'an Jiaotong University, Xi'an, China
– sequence: 2
  givenname: Wanjun
  orcidid: 0000-0002-0974-2081
  surname: Lei
  fullname: Lei, Wanjun
  organization: Institute of Electrical Science and Technology, Xi'an Jiaotong University, Xi'an, China
– sequence: 3
  givenname: Jiaqi
  orcidid: 0000-0002-5886-8924
  surname: Zhao
  fullname: Zhao, Jiaqi
  organization: Institute of Electrical Science and Technology, Xi'an Jiaotong University, Xi'an, China
– sequence: 4
  givenname: Xing
  orcidid: 0000-0003-3894-9513
  surname: Sun
  fullname: Sun, Xing
  organization: Institute of Electrical Science and Technology, Xi'an Jiaotong University, Xi'an, China
BookMark eNp9kDtPwzAUhS0EEuWxMzBYYk65fqYZoVBAKgIJEGOUODfFVbCL4yLBwG_H0EogBiYP53z3yN8O2XTeISEHDIaMQXF8f3U-5MDFUAhgSsgNMmBK5VlRyNEmGQDPRxmA1Ntkp-_nAEwqpgbk42YR7XPV0Ue0s6do3YxOKhN9oGfY25mjvqUT62xEOvYuBt_RO4z02jfY0duAjTXRvv6Ep1WPDfWOXi-7aH09x1V-4mLqdN690e9F-16l2O2Rrbbqetxfv7vkYXJ-P77MpjcXV-OTaWaEGsVMq0KKpkbFueQta4zIBXCusdVg2qaQclQA07wQXENeG2FMnRvJGdRFalVilxyt7i6Cf1liH8u5XwaXJksBItdCJzepBauWCb7vA7blIiQ54a1kUH5ZLpPl8styubacEP0HMTZ-fy2Gynb_gYcr0CLirx3OcyWV-AQWyIv1
CODEN ITIED6
CitedBy_id crossref_primary_10_1049_pel2_12733
crossref_primary_10_1587_transele_2023ECP5038
crossref_primary_10_32604_cmc_2024_056286
crossref_primary_10_1007_s12239_024_00177_6
crossref_primary_10_1002_cta_4377
crossref_primary_10_1002_tee_24043
crossref_primary_10_1007_s42452_024_05872_8
Cites_doi 10.1109/TIE.2021.3070502
10.1109/TIE.2021.3120441
10.1109/TIE.2016.2561880
10.1109/TIE.2020.2965460
10.1109/JESTPE.2021.3100687
10.1109/CHILECON54041.2021.9702932
10.1109/TPEL.2016.2619378
10.23919/EPE20ECCEEurope43536.2020.9215739
10.1109/TPEL.2021.3126815
10.1109/TIE.2020.2973907
10.1109/ICIT.2009.4939742
10.1109/ACCESS.2019.2958415
10.1007/s11595-006-1007-z
10.1109/IECON.2010.5675066
10.1109/TIE.2017.2751008
10.1109/TIE.2021.3075890
10.1109/TII.2020.2981039
10.1109/TIE.2018.2838073
10.1109/TIE.2021.3108701
10.1109/IEMCON53756.2021.9623099
10.1109/PEAC56338.2022.9959624
10.1109/TIE.2020.2969116
10.1109/PEDSTC52094.2021.9405956
10.1109/TIE.2018.2875660
10.1049/cp.2014.1364
10.1186/s41601-021-00204-z
10.1109/TPEL.2018.2834304
10.1109/TIE.2021.3057038
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIE.2023.3301534
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 11
ExternalDocumentID 10_1109_TIE_2023_3301534
10227545
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
5VS
9M8
AAYXX
ACKIV
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IBMZZ
ICLAB
IFJZH
VH1
VJK
7SP
8FD
L7M
ID FETCH-LOGICAL-c358t-65943dbe52242f1dc3730226ef60cfd944890162932607bc3ccb7c4210b926ea3
IEDL.DBID RIE
ISSN 0278-0046
IngestDate Mon Jun 30 08:30:32 EDT 2025
Thu Apr 24 23:07:12 EDT 2025
Wed Oct 01 03:02:22 EDT 2025
Wed Aug 27 02:13:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-65943dbe52242f1dc3730226ef60cfd944890162932607bc3ccb7c4210b926ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3894-9513
0000-0002-0974-2081
0000-0002-0281-7220
0000-0002-5886-8924
PQID 3037636004
PQPubID 85464
PageCount 11
ParticipantIDs proquest_journals_3037636004
crossref_primary_10_1109_TIE_2023_3301534
ieee_primary_10227545
crossref_citationtrail_10_1109_TIE_2023_3301534
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref20
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Xu (ref25) 2008; 22
References_xml – ident: ref12
  doi: 10.1109/TIE.2021.3070502
– ident: ref18
  doi: 10.1109/TIE.2021.3120441
– ident: ref23
  doi: 10.1109/TIE.2016.2561880
– ident: ref28
  doi: 10.1109/TIE.2020.2965460
– ident: ref20
  doi: 10.1109/JESTPE.2021.3100687
– ident: ref7
  doi: 10.1109/CHILECON54041.2021.9702932
– ident: ref9
  doi: 10.1109/TPEL.2016.2619378
– ident: ref14
  doi: 10.23919/EPE20ECCEEurope43536.2020.9215739
– ident: ref11
  doi: 10.1109/TPEL.2021.3126815
– ident: ref5
  doi: 10.1109/TIE.2020.2973907
– ident: ref6
  doi: 10.1109/ICIT.2009.4939742
– ident: ref21
  doi: 10.1109/ACCESS.2019.2958415
– volume: 22
  start-page: 7
  issue: 1
  year: 2008
  ident: ref25
  article-title: The research on the parameters of the ant colony algorithm
  publication-title: J. Shandong Univ. Technol.
  doi: 10.1007/s11595-006-1007-z
– ident: ref10
  doi: 10.1109/IECON.2010.5675066
– ident: ref24
  doi: 10.1109/TIE.2017.2751008
– ident: ref1
  doi: 10.1109/TIE.2021.3075890
– ident: ref17
  doi: 10.1109/TII.2020.2981039
– ident: ref8
  doi: 10.1109/TIE.2018.2838073
– ident: ref3
  doi: 10.1109/TIE.2021.3108701
– ident: ref19
  doi: 10.1109/IEMCON53756.2021.9623099
– ident: ref2
  doi: 10.1109/PEAC56338.2022.9959624
– ident: ref15
  doi: 10.1109/TIE.2020.2969116
– ident: ref27
  doi: 10.1109/PEDSTC52094.2021.9405956
– ident: ref16
  doi: 10.1109/TIE.2018.2875660
– ident: ref26
  doi: 10.1049/cp.2014.1364
– ident: ref13
  doi: 10.1186/s41601-021-00204-z
– ident: ref22
  doi: 10.1109/TPEL.2018.2834304
– ident: ref4
  doi: 10.1109/TIE.2021.3057038
SSID ssj0014515
Score 2.524446
Snippet In this article, an improved multiobjective ant colony optimization (ACO) algorithm is proposed to design the weighting factors (WFs) in the model predictive...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Ant colony optimization
Ant colony optimization (ACO)
Capacitors
current balance control
dc–dc converter
Design factors
Genetic algorithms
model predictive control (MPC)
Multiple objective analysis
Optimization
Particle swarm optimization
Power converters
Predictive control
Predictive models
Switches
Tuning
Weighting
weighting factor (WF)
Title Optimal Weighting Factor Design of Finite Control Set Model Predictive Control Based on Multiobjective Ant Colony Optimization
URI https://ieeexplore.ieee.org/document/10227545
https://www.proquest.com/docview/3037636004
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9948
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014515
  issn: 0278-0046
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEww8iygU5IGFIWmaOHYzltKoMBQkWtEtqh-RgJKgkg4w8Ns520lVQCC2KLkklu58953vhdBZm6VsGqjI8dsyAgdFhA4XIMvtYJrSMBUatOtsiyEdjMn1JJyUxeqmFkYpZZLPlKsvTSxf5mKhj8pa2jthYPLX0TrrUFustQwZkNCOK_B1y1jw-qqYpBe1Rld9V48Jd8F5hx1OvtggM1TlhyY25iXeRsNqYTar5MldFNwV7996Nv575TtoqwSauGslYxetqWwPba60H9xHHzegL56B6N6cj8I9HJvxO_jS5HXgPMXxgwaluGcz2vGdKrAenzbDt3Md4tHKcvnwAiyixHmGTVVvzh-tMsXdrACaWZ69YfPHsvSzjsZxf9QbOOU8BkcEYadwaBiRQHIFkI34aVuKANQDwDeVUk-kMgJPD9AF9TUk9BgXgRCcCQJOJY-AahocoFqWZ-oQYUKpYtLvKMUp4WHAlQSgBdiMAwBUvt9ArYpDiSibleuZGbPEOC1elABPE83TpORpA50v33ixjTr-oK1rFq3QWe40ULOSgqTcyq8J2Himm6p55OiX147RBnyd2CTeJqoV84U6AahS8FMjop9MDOPY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICBN6JQwAMLQ9I87ISM5VEVKAWJItii2nEkoCSopAMM_HbOdlIVEIgtSs5ypDvffed7Aey7YRr2fRlZnptE6KAIZnGBsuz6_TRgqVCgXWVbdIP2LT2_Z_dlsbquhZFS6uQzaatHHctPcjFSV2UN5Z2EaPKnYZZRSpkp1xoHDSgzAws81TQW_b4qKulEjd7Zqa0GhdvovuMZp1-skB6r8kMXawPTWoJu9Wsmr-TJHhXcFu_fujb--9-XYbGEmqRpZGMFpmS2CgsTDQjX4OMKNcYzEt3pG1J8R1p6AA850ZkdJE9J60HBUnJsctrJjSyIGqA2INdDFeRR6nL88QhtYkLyjOi63pw_GnVKmlmBNIM8eyN6x7L4cx1uW6e947ZVTmSwhM8OCytgEfUTLhG0US91E-GjgkAAJ9PAEWkSoa-H-CLwFCh0Qi58IXgoKLqVPEKqvr8BM1meyU0gNAhkmHiHUvKAcuZzmSDUQnTGEQJKz6tBo-JQLMp25WpqxiDWbosTxcjTWPE0Lnlag4PxihfTquMP2nXFogk6w50a1CspiMvD_BqjlQ9VWzWHbv2ybA_m2r3LTtw5615swzzuRE1Kbx1miuFI7iBwKfiuFtdPYXjnJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Weighting+Factor+Design+of+Finite+Control+Set+Model+Predictive+Control+Based+on+Multiobjective+Ant+Colony+Optimization&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Hu%2C+Linqiang&rft.au=Lei%2C+Wanjun&rft.au=Zhao%2C+Jiaqi&rft.au=Sun%2C+Xing&rft.date=2024-07-01&rft.pub=IEEE&rft.issn=0278-0046&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTIE.2023.3301534&rft.externalDocID=10227545
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon