Optimal Weighting Factor Design of Finite Control Set Model Predictive Control Based on Multiobjective Ant Colony Optimization

In this article, an improved multiobjective ant colony optimization (ACO) algorithm is proposed to design the weighting factors (WFs) in the model predictive control of power converters. First, the principle of the multiobjective ACO algorithm is introduced. Then, the WF design process based on the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 71; no. 7; pp. 1 - 11
Main Authors Hu, Linqiang, Lei, Wanjun, Zhao, Jiaqi, Sun, Xing
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0046
1557-9948
DOI10.1109/TIE.2023.3301534

Cover

More Information
Summary:In this article, an improved multiobjective ant colony optimization (ACO) algorithm is proposed to design the weighting factors (WFs) in the model predictive control of power converters. First, the principle of the multiobjective ACO algorithm is introduced. Then, the WF design process based on the multiobjective ACO algorithm is given in both the single-function mode and the Pareto mode. Finally, improvement measures are proposed for the multiobjective ACO algorithm to reduce the calculation and accelerate the convergence. Simulations and experiments are carried out on a parallel three-level dc-dc converter. The results show that the proposed method is faster and less-computational than the traditional ACO algorithm, and is more accurate than the particle swarm optimization algorithm. With the proposed method, higher solution diversity and smaller control error can be achieved. In addition, the proposed method can also be used for WF online tuning, which will bring more benefits when the converter parameters are mismatched.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2023.3301534